ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Материалы по этой теме:
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Двадцать пять монет раскладывают по кучкам следующим образом. Сначала их произвольно разбивают на две группы. Затем любую из имеющихся групп снова разбивают на две группы, и так далее до тех пор, пока каждая группа не будет состоять из одной монеты. При каждом разбиении какой-либо группы на две записывается произведение количеств монет в двух получившихся группах. Чему может быть равна сумма всех записанных чисел? В окружности $\Omega $ хорды $A_1A_2$, $A_3A_4$, $A_5A_6$ пересекаются в точке $O$. Пусть $B_i$ – вторая точка пересечения окружности $\Omega$ с окружностью, построенной на отрезке $OA_i$ как на диаметре. Докажите, что хорды $B_1B_2$, $B_3B_4$, $B_5B_6$ пересекаются в одной точке. Периметр треугольника ABC равен 2p. На сторонах AB и AC
взяты точки M и N так, что MN| BC и MN касается
вписанной окружности треугольника ABC. Найдите наибольшее
значение длины отрезка MN.
Пусть $O$, $I$ – центры описанной и вписанной окружностей треугольника $ABC$; $R$, $r$ – их радиусы; $D$ – точка касания вписанной окружности со стороной $BC$; $N$ – произвольная точка на отрезке $ID$. Перпендикуляр к $ID$ в точке $N$ пересекает описанную окружность $ABC$ в точках $X$ и $Y$. Пусть $O_1$ – центр описанной окружности $XIY$. Найдите произведение $OO_1\cdot IN$. |
Страница: << 103 104 105 106 107 108 109 >> [Всего задач: 1282]
Продолжения боковых сторон $AB$ и $CD$ трапеции $ABCD$ ($AD > BC$) пересекаются в точке $P$. На отрезке $AD$ нашлась такая точка $Q$, что $BQ=CQ$. Докажите, что линия центров окружностей, описанных около треугольников $AQC$ и $BQD$, перпендикулярна прямой $PQ$.
В треугольнике $ABC$ вписанная окружность $\omega$ касается сторон $BC$, $CA$, $AB$ в точках $A_1$, $B_1$ и $C_1$ соответственно, $P$ – произвольная точка этой окружности. Прямая $AP$ вторично пересекает описанную окружность треугольника $AB_1C_1$ в точке $A_2$. Аналогично строятся точки $B_2$ и $C_2$. Докажите, что описанная около треугольника $A_2B_2C_2$ окружность касается $\omega$.
На окружности даны четыре точки A, B, C, D. Через каждую пару соседних точек проведена окружность. Вторые точки пересечения соседних окружностей обозначим через A1, B1, C1, D1. (Некоторые из них могут совпадать с прежними.) Доказать, что A1, B1, C1, D1 лежат на одной окружности.
Все точки данного отрезка AB проектируются на всевозможные прямые, проходящие через данную точку O. Найти геометрическое место этих проекций.
Известно, что трапеция ABCD — равнобедренная,
BC
Страница: << 103 104 105 106 107 108 109 >> [Всего задач: 1282]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке