Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 104 105 106 107 108 109 110 >> [Всего задач: 772]      



Задача 66954

Темы:   [ Вписанные и описанные окружности ]
[ Прямые, касающиеся окружностей (прочее) ]
[ Теорема Птолемея ]
[ Гомотетия помогает решить задачу ]
Сложность: 5
Классы: 9,10,11

Автор: Белухов Н.

Пусть $AM$ – медиана неравнобедренного треугольника $ABC$, $T$ – точка касания вписанной окружности $\omega$ со стороной $BC$, $S$ – вторая точка пересечения $\omega$ с отрезком $AT$. Докажите, что вписанная окружность треугольника $\delta$, образованного прямыми $AM$, $BC$ и касательной к $\omega$ в точке $S$, касается описанной окружности треугольника $ABC$.
Прислать комментарий     Решение


Задача 66984

Темы:   [ ГМТ с ненулевой площадью ]
[ Признаки и свойства касательной ]
[ Теория алгоритмов (прочее) ]
[ Векторы помогают решить задачу ]
[ Гомотетия помогает решить задачу ]
Сложность: 5
Классы: 10,11

Автор: Дидин М.

На аттракционе «Весёлая парковка» у машинки только 2 положения руля: «вправо» и «совсем вправо». В зависимости от положения руля, машинка едет по дуге радиуса $r_1$ или $r_2$. Машинка выехала из точки $A$ на север и проехала расстояние $l$, повернув при этом на угол $\alpha<2\pi$. Где она могла оказаться (найдите ГМТ – концов возможных траекторий)?
Прислать комментарий     Решение


Задача 67185

Темы:   [ Вневписанные окружности ]
[ Две касательные, проведенные из одной точки ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
[ Гомотетия помогает решить задачу ]
Сложность: 5
Классы: 8,9,10

Периметр треугольника $ABC$ равен 1. Окружность $\omega$ касается стороны $BC$, продолжения стороны $AB$ в точке $P$ и продолжения стороны $AC$ в точке $Q$. Прямая, проходящая через середины $AB$ и $AC$, пересекает описанную окружность треугольника $APQ$ в точках $X$ и $Y$. Найдите длину отрезка $XY$.
Прислать комментарий     Решение


Задача 52454

Темы:   [ Вспомогательная окружность ]
[ Теорема о длинах касательной и секущей; произведение всей секущей на ее внешнюю часть ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
Сложность: 5+
Классы: 8,9

Противоположные стороны четырёхугольника, вписанного в окружность, пересекаются в точках P и Q. Найдите PQ, если касательные к окружности, проведённые из точек P и Q, равны a и b.

Прислать комментарий     Решение


Задача 53256

Темы:   [ Касающиеся окружности ]
[ Теорема о длинах касательной и секущей; произведение всей секущей на ее внешнюю часть ]
Сложность: 5+
Классы: 8,9

В полукруг помещены две окружности диаметром d и D (d < D) так, что каждая окружность касается дуги и диаметра полукруга, а также другой окружности. Через центры окружностей проведена прямая, пересекающая продолжение диаметра полукруга в точке M. Из точки M проведена касательная к дуге полукруга (N — точка касания). Найдите MN.

Прислать комментарий     Решение


Страница: << 104 105 106 107 108 109 110 >> [Всего задач: 772]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .