Страница:
<< 61 62 63 64
65 66 67 >> [Всего задач: 2257]
В окружность вписан четырёхугольник ABCD, диагонали которого
пересекаются в точке M. Известно, что AB = a, CD = b, ∠AMB = α.
Найдите радиус окружности.
Гипотенуза прямоугольного треугольника служит стороной квадрата, расположенного вне треугольника.
Найдите расстояние между вершиной прямого угла треугольника и центром квадрата, если сумма катетов треугольника равна d.
На диагоналях AC и BD трапеции ABCD взяты соответственно
точки M и N так, что AM : MC = DN : NB = 1 : 4.
Найдите MN, если основания AD = a, BC = b (a > b).
В параллелограмм вписан ромб так, что его стороны параллельны диагоналям параллелограмма.
Найдите сторону ромба, если диагонали параллелограмма равны l и m.
С помощью циркуля и линейки проведите прямую, параллельную основаниям трапеции, так, чтобы отрезок этой прямой внутри трапеции делился бы диагоналями на три равные части.
Страница:
<< 61 62 63 64
65 66 67 >> [Всего задач: 2257]