ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 118 119 120 121 122 123 124 >> [Всего задач: 2247]      



Задача 79617

Темы:   [ Четырехугольник: вычисления, метрические соотношения. ]
[ Применение тригонометрических формул (геометрия) ]
[ Тождественные преобразования (тригонометрия) ]
Сложность: 4-
Классы: 9,10

Докажите, что если сумма косинусов углов четырёхугольника равна нулю, то он — параллелограмм, трапеция или вписанный четырёхугольник.
Прислать комментарий     Решение


Задача 102243

Темы:   [ Ромбы. Признаки и свойства ]
[ Теорема косинусов ]
Сложность: 4-
Классы: 8,9

Стороны ромба EFGH являются гипотенузами равнобедренных прямоугольных треугольников EAF, FDG, GCH, HBE, причём все эти треугольники имеют общие внутренние точки с ромбом EFGH. Сумма площадей четырёхугольника ABCD и ромба EFGH равна 12. Найдите GH.
Прислать комментарий     Решение


Задача 102244

Темы:   [ Ромбы. Признаки и свойства ]
[ Теорема косинусов ]
Сложность: 4-
Классы: 8,9

Стороны ромба ABCD являются гипотенузами равнобедренных прямоугольных треугольников AKB, BLC, CMD, DNA, причём ни один из этих треугольников не имеет общих внутренних точек с ромбом ABCD. Разность площадей четырёхугольника KLMN и ромба ABCD равна 18. Найдите AB.
Прислать комментарий     Решение


Задача 52468

 [Теорема Птолемея]
Темы:   [ Теорема Птолемея ]
[ Две пары подобных треугольников ]
[ Вспомогательные равные треугольники ]
[ Площадь четырехугольника ]
[ Площадь треугольника (через две стороны и угол между ними) ]
[ Площадь фигуры равна сумме площадей фигур, на которые она разбита ]
Сложность: 4-
Классы: 8,9

Докажите, что если четырёхугольник вписан в окружность, то сумма произведений длин двух пар его противоположных сторон равна произведению длин его диагоналей.

Прислать комментарий     Решение

Задача 52495

Темы:   [ Вписанные четырехугольники (прочее) ]
[ Вспомогательная окружность ]
Сложность: 4-
Классы: 8,9

Через точку O внутри выпуклого четырёхугольника ABCD проведены четыре окружности одинакового радиуса, каждая из которых касается двух смежных сторон четырёхугольника. Докажите, что около четырёхугольника ABCD можно описать окружность.

Прислать комментарий     Решение


Страница: << 118 119 120 121 122 123 124 >> [Всего задач: 2247]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .