Страница:
<< 121 122 123 124
125 126 127 >> [Всего задач: 2247]
На основании AD трапеции ABCD взяты точки K и L так, что AK = LD. Отрезки AC и BL пересекаются в точке M, отрезки KC и BD – в точке N.
Докажите, что отрезок MN параллелен основаниям трапеции.
На сторонах AB, BC, CD, DA параллелограмма ABCD взяты соответственно точки M, N, K, L, делящие эти стороны в одном и том
же отношении (при обходе по часовой стрелке). Докажите, что при пересечении прямых AN, BK, CL и DM получится параллелограмм, причём его центр совпадает с центром параллелограмма ABCD.
Докажите, что биссектрисы всех четырёх углов прямоугольника, не являющегося квадратом, при пересечении образуют квадрат.
Дана трапеция ABCD с основаниями AD и BC. Биссектрисы углов при вершинах A и B пересекаются в точке M, а биссектрисы углов при вершинах C и D – в точке N. Найдите MN, если известно, что AB = a, BC = b, CD = c и AD = d.
Боковые стороны AB и CD трапеции ABCD равны соответственно 8 и 10, а основание BC равно 2. Биссектриса угла ADC проходит через середину стороны AB. Найдите площадь трапеции.
Страница:
<< 121 122 123 124
125 126 127 >> [Всего задач: 2247]