ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 124 125 126 127 128 129 130 >> [Всего задач: 2247]      



Задача 64701

Темы:   [ Четырехугольники (прочее) ]
[ Осевая и скользящая симметрии (прочее) ]
[ Свойства медиан. Центр тяжести треугольника. ]
[ Биссектриса угла (ГМТ) ]
[ Вспомогательная площадь. Площадь помогает решить задачу ]
Сложность: 4-
Классы: 8,9

В выпуклом четырёхугольнике ABCD лучи AB и DC пересекаются в точке K. На биссектрисе угла AKD нашлась такая точка P, что прямые BP и CP делят пополам отрезки AC и BD соответственно. Докажите, что  AB = CD.

Прислать комментарий     Решение

Задача 64725

Темы:   [ Признаки и свойства параллелограмма ]
[ Вписанные и описанные окружности ]
[ Четыре точки, лежащие на одной окружности ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
[ Признаки подобия ]
[ Вспомогательные подобные треугольники ]
Сложность: 4-
Классы: 10,11

На сторонах AD и CD параллелограмма ABCD с центром O отмечены такие точки P и Q соответственно, что  ∠AOP = ∠COQ = ∠ABC.
  а) Докажите, что  ∠ABP = ∠CBQ.
  б) Докажите, что прямые AQ и CP пересекаются на описанной окружности треугольника ABC.

Прислать комментарий     Решение

Задача 64766

Темы:   [ Равнобедренные, вписанные и описанные трапеции ]
[ Центральная симметрия (прочее) ]
[ Симметрия помогает решить задачу ]
[ Ортогональная (прямоугольная) проекция ]
Сложность: 4-
Классы: 8,9,10

Трапеция ABCD с основаниями AB и CD вписана в окружность Ω. Окружность ω проходит через точки C, D и пересекает отрезки CA, CB в точках A1, B1 соответственно. Точки A2 и B2 симметричны точкам A1 и B1 относительно середин отрезков CA и CB соответственно. Докажите, что точки A, B, A2 и B2 лежат на одной окружности.

Прислать комментарий     Решение

Задача 64805

Темы:   [ Вписанные четырехугольники (прочее) ]
[ Три точки, лежащие на одной прямой ]
[ Радикальная ось ]
[ Средняя линия треугольника ]
[ Конкуррентность высот. Углы между высотами. ]
Сложность: 4-
Классы: 9,10

Автор: Нилов Ф.

В четырёхугольнике ABCD углы A и C – прямые. На сторонах AB и CD как на диаметрах построены окружности, пересекающиеся в точках X и Y. Докажите, что прямая XY проходит через середину K диагонали AC

Прислать комментарий     Решение

Задача 64870

Темы:   [ Параллелограммы (прочее) ]
[ Прямая Эйлера и окружность девяти точек ]
Сложность: 4-
Классы: 8,9,10

Перпендикуляр, восстановленный в вершине C параллелограмма ABCD к прямой CD, пересекает в точке F перпендикуляр, опущенный из вершины A на диагональ BD, а перпендикуляр, восстановленный из точки B к прямой AB, пересекает в точке E серединный перпендикуляр к отрезку AC. В каком отношении отрезок EF делится стороной BC?

Прислать комментарий     Решение

Страница: << 124 125 126 127 128 129 130 >> [Всего задач: 2247]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .