ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 125 126 127 128 129 130 131 >> [Всего задач: 2247]      



Задача 64871

Темы:   [ Прямоугольники и квадраты. Признаки и свойства ]
[ Две пары подобных треугольников ]
[ Прямая Симсона ]
Сложность: 4-
Классы: 8,9,10

Автор: Садыков Р.

Дан прямоугольник ABCD. Через точку B провели две перпендикулярные прямые. Первая прямая пересекает сторону AD в точке K, а вторая   продолжение стороны CD в точке L. Пусть F – точка пересечения KL и AC. Докажите, что  BFKL.

Прислать комментарий     Решение

Задача 64874

Темы:   [ Прямоугольники и квадраты. Признаки и свойства ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
[ Средние пропорциональные в прямоугольном треугольнике ]
[ Две пары подобных треугольников ]
Сложность: 4-
Классы: 8,9,10

Точки K, L, M и N на сторонах AB, BC, CD и DA квадрата ABCD образуют еще один квадрат. DK пересекает NM в точке E, а KC пересекает LM в точке F.
Докажите, что  EF || AB.

Прислать комментарий     Решение

Задача 65014

Темы:   [ Четырехугольник: вычисления, метрические соотношения. ]
[ Вспомогательные подобные треугольники ]
Сложность: 4-
Классы: 9,10

В выпуклом четырёхугольнике ABCD  AB = BC.  На диагонали BD выбрана такая точка K, что  ∠AKB + ∠BKC = ∠A + ∠C.
Докажите, что  AK·CD = KC·AD.

Прислать комментарий     Решение

Задача 65015

Темы:   [ Четырехугольники (прочее) ]
[ Отношение площадей треугольников с общим углом ]
[ Признаки подобия ]
[ Неравенство Коши ]
Сложность: 4-
Классы: 9,10

На стороне AD выпуклого четырёхугольника ABCD нашлась такая точка M, что CM и BM параллельны AB и CD соответственно.
Докажите, что  SABCD ≥ 3SBCM.

Прислать комментарий     Решение

Задача 65036

Темы:   [ Трапеции (прочее) ]
[ Три точки, лежащие на одной прямой ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
[ Признаки подобия ]
Сложность: 4-
Классы: 8,9

В трапеции ABCD диагонали пересекаются в точке O. На боковой стороне CD выбрана точка M, а на основаниях BC и AD – точки P и Q так, что отрезки MP и MQ параллельны диагоналям трапеции. Докажите, что прямая PQ проходит через точку O.

Прислать комментарий     Решение

Страница: << 125 126 127 128 129 130 131 >> [Всего задач: 2247]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .