Страница:
<< 125 126 127 128
129 130 131 >> [Всего задач: 2247]
|
|
Сложность: 4- Классы: 8,9,10
|
Дан прямоугольник ABCD. Через точку B провели две перпендикулярные прямые. Первая прямая пересекает сторону AD в точке K, а вторая продолжение стороны CD в точке L. Пусть F – точка пересечения KL и AC. Докажите, что BF ⊥ KL.
|
|
Сложность: 4- Классы: 8,9,10
|
Точки K, L, M и N на сторонах AB, BC, CD и DA квадрата ABCD образуют еще один квадрат. DK пересекает NM в точке E, а KC пересекает LM в точке F.
Докажите, что EF || AB.
|
|
Сложность: 4- Классы: 9,10
|
В выпуклом четырёхугольнике ABCD AB = BC. На диагонали BD выбрана такая точка K, что ∠AKB + ∠BKC = ∠A + ∠C.
Докажите, что AK·CD = KC·AD.
|
|
Сложность: 4- Классы: 9,10
|
На стороне AD выпуклого четырёхугольника ABCD нашлась такая точка M, что CM и BM параллельны AB и CD соответственно.
Докажите, что SABCD ≥ 3SBCM.
В трапеции ABCD диагонали пересекаются в точке O. На боковой стороне CD выбрана точка M, а на основаниях BC и AD – точки P и Q так, что отрезки MP и MQ параллельны диагоналям трапеции. Докажите, что прямая PQ проходит через точку O.
Страница:
<< 125 126 127 128
129 130 131 >> [Всего задач: 2247]