ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 127 128 129 130 131 132 133 >> [Всего задач: 2247]      



Задача 65232

Темы:   [ Трапеции (прочее) ]
[ Отношение площадей треугольников с общим основанием или общей высотой ]
[ Перегруппировка площадей ]
Сложность: 4-
Классы: 10,11

O – точка пересечения диагоналей трапеции ABCD. Прямая, проходящая через C и точку, симметричную B относительно O, пересекает основание AD в точке K. Докажите, что  SAOK = SAOB + SDOK.

Прислать комментарий     Решение

Задача 65236

Темы:   [ Признаки и свойства параллелограмма ]
[ Вписанные и описанные окружности ]
[ Две касательные, проведенные из одной точки ]
[ Симметрия помогает решить задачу ]
Сложность: 4-
Классы: 9,10,11

Автор: Якубов А.

Параллелограмм ABCD таков, что  ∠B < 90°  и  AB < BC.  Точки E и F выбраны на описанной окружности ω треугольника ABC так, что касательные к ω в этих точках проходят через точку D. Оказалось, что  ∠EDA = ∠FDC.  Найдите угол ABC.

Прислать комментарий     Решение

Задача 65243

Темы:   [ Признаки и свойства параллелограмма ]
[ Вписанные и описанные окружности ]
[ Две касательные, проведенные из одной точки ]
[ Симметрия помогает решить задачу ]
[ Вписанный угол равен половине центрального ]
Сложность: 4-
Классы: 9,10,11

Дан параллелограмм ABCD, в котором  AB < AC < BC.  Точки E и F выбраны на описанной окружности ω треугольника ABC так, что касательные к ω в этих точках проходят через точку D; при этом отрезки AD и CE пересекаются. Оказалось, что  ∠ABF = ∠DCE.  Найдите угол ABC.

Прислать комментарий     Решение

Задача 65471

Темы:   [ Вписанные четырехугольники (прочее) ]
[ Отношения линейных элементов подобных треугольников ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 4-
Классы: 9,10,11

Автор: Дидин М.

Дан вписанный четырёхугольник АВСD. Продолжения его противоположных сторон пересекаются в точках P и Q. Пусть К и N – середины диагоналей.
Докажите, что сумма углов PKQ и PNQ равна 180°.

Прислать комментарий     Решение

Задача 65484

Темы:   [ Вписанные четырехугольники (прочее) ]
[ Вписанные и описанные окружности ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
[ Вписанные и описанные окружности ]
[ Неравенство Коши ]
Сложность: 4-
Классы: 10,11

Четырёхугольник АВСD вписан в окружность, I – центр вписанной окружности треугольника ABD.
Найдите наименьшее значение BD, если  AI = BC = CD = 2.

Прислать комментарий     Решение

Страница: << 127 128 129 130 131 132 133 >> [Всего задач: 2247]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .