|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Страница: << 117 118 119 120 121 122 123 >> [Всего задач: 2257]
В четырёхугольнике ABCD, вписанном в окружность, диагонали AC и BD перпендикулярны и пересекаются в точке Q. Отрезок, соединяющий вершину C с серединой отрезка AD, равен 3. Расстояние от точки Q до отрезка BC равно 1, сторона AD равна 2. Найдите AQ.
Две прямые, параллельные основаниям трапеции, делят каждую из боковых сторон на три равные части. Вся трапеция разделена ими на три части. Найдите площадь средней части, если площади крайних равны S1 и S2.
Докажите, что если диагонали выпуклого четырёхугольника равны, то его площадь равна произведению отрезков, соединяющих середины противоположных сторон.
В ромбе ABCD угол A равен 60o. Точки M и N лежат на сторонах CD и AD соответственно. Докажите, что если один из углов треугольника BMN равен равен 60o, то и остальные тоже равны по 60o.
Страница: << 117 118 119 120 121 122 123 >> [Всего задач: 2257] |
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|