ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 114 115 116 117 118 119 120 >> [Всего задач: 2247]      



Задача 53651

Темы:   [ Ромбы. Признаки и свойства ]
[ Правильный (равносторонний) треугольник ]
Сложность: 4-
Классы: 8,9

Угол при вершине A ромба ABCD равен 60o. На сторонах AB и BC взяты соответственно точки M и N, причём AM = BN. Докажите, что треугольник MDN — равносторонний.

Прислать комментарий     Решение


Задача 53682

Темы:   [ Проекции оснований, сторон или вершин трапеции ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
Сложность: 4-
Классы: 8,9

Диагональ AC равнобедренной трапеции ABCD равна a и образует углы $ \alpha$ и $ \beta$ соответственно с большим основанием AD и боковой стороной AB. Найдите основания трапеции.

Прислать комментарий     Решение


Задача 53684

Темы:   [ Признаки и свойства параллелограмма ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
Сложность: 4-
Классы: 8,9

Стороны параллелограмма равны a и b, а угол между ними равен $ \alpha$. Найдите стороны и диагонали четырёхугольника, образованного пересечением биссектрис внутренних углов параллеллограмма.

Прислать комментарий     Решение


Задача 54108

Темы:   [ Прямоугольники и квадраты. Признаки и свойства ]
[ Построения ]
Сложность: 4-
Классы: 8,9

С помощью циркуля и линейки постройте квадрат по его центру и двум точкам, лежащим на противоположных сторонах.

Прислать комментарий     Решение


Задача 54270

Темы:   [ Перенос стороны, диагонали и т.п. ]
[ Площадь трапеции ]
Сложность: 4-
Классы: 8,9

Найдите площадь трапеции с основаниями 11 и 4 и диагоналями 9 и 12.

Прислать комментарий     Решение


Страница: << 114 115 116 117 118 119 120 >> [Всего задач: 2247]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .