Страница:
<< 12 13 14 15 16
17 18 >> [Всего задач: 88]
Пусть M и N – середины сторон CD и DE правильного шестиугольника ABCDEF. Найдите угол между прямыми AM и BN.
Дан шестиугольник ABCDEF, в котором AB = BC,
CD = DE, EF = FA,
а углы A и C — прямые.
Докажите, что прямые FD и BE перпендикулярны.
Дан выпуклый шестиугольник, каждая диагональ которого, соединяющая противоположные вершины, делит его площадь пополам.
Докажите, что эти диагонали пересекаются в одной точке.
|
|
Сложность: 5+ Классы: 9,10,11
|
|
а) На рис. 1 плоскость покрыта квадратами пяти цветов. Центры квадратов одного и того же цвета расположены в вершинах сетки из одинаковых квадратов. При каком числе n цветов возможно аналогичное заполнение плоскости?
б) На рис. 2 плоскость покрыта шестиугольниками семи цветов так, что центры шестиугольников одного и того же цвета образуют вершины решётки из одинаковых правильных треугольников. При каком числе n цветов возможно аналогичное построение?
Примечание. Имеются в виду только такие заполнения плоскости фигурками (квадратами или шестиугольниками), при котором сетка, соответствующая какому-то одному цвету, имеет такие же размеры и направления сторон квадратов (или треугольников), как и сетка, соответствующая любому другому цвету (то есть все сетки должны получаться друг из друга параллельным сдвигом). |
|
[Неравенство Птолемея]
|
|
Сложность: 7- Классы: 9,10,11
|
а) Докажите, что если
A,
B,
C и
D — произвольные точки плоскости, то
AB . CD +
BC . ADAC . BD (
неравенство Птолемея).
б) Докажите, что если
A1,
A2, ...
A6 — произвольные точки
плоскости, то
в) Докажите, что (нестрогое) неравенство Птолемея обращается в равенство тогда
и только тогда, когда
ABCD — (выпуклый) вписанный четырехугольник.
г) Докажите, что неравенство из задачи б) обращается в равенство тогда и
только тогда, когда
A1...
A6 — вписанный шестиугольник.
Страница:
<< 12 13 14 15 16
17 18 >> [Всего задач: 88]