Страница:
<< 11 12 13 14
15 16 17 >> [Всего задач: 373]
|
|
Сложность: 4 Классы: 9,10,11
|
Большая окружность вписана в ромб, каждая из двух меньших окружностей касается двух сторон ромба и большой окружности, как на рисунке. Через точки касания окружностей со сторонами ромба провели четыре штриховые прямые, как на рисунке. Докажите, что они образуют квадрат.
|
|
Сложность: 4 Классы: 9,10,11
|
Дан треугольник $ABC$. Точки $A_1$, $A_2$, $B_1$, $B_2$ берутся на его описанной окружности так, что $A_1B_1\parallel AB$, $A_1A_2\parallel BC$, $B_1B_2\parallel AC$. Прямые $AA_2$ и $CA_1$ пересекаются в точке $A'$, а прямые $BB_2$ и $CB_1$ – в точке $B'$. Докажите, что все прямые $A'B'$ проходят через одну точку.
|
|
Сложность: 4 Классы: 9,10,11
|
На плоскости даны два отрезка A1B1 и A2B2, причём A2B2/A1B1 = k < 1. На отрезке A1A2 взята точка A3, а на продолжении этого отрезка за точку А2 – точка А4 так, что A3А2/А3А1 = А4А2/А4А1 = k. Аналогично на отрезке В1В2 берётся точка В3, а на продолжении этого отрезка за точку В2 – точка В4 так, что
В3В2/В3В1 = В4В2/В4В1 = k. Найти угол между прямыми А3В3 и А4В4.
Докажите, что при гомотетии с центром в точке пересечения высот треугольника
и коэффициентом
описанная окружность треугольника переходит
в окружность девяти точек.
На сторонах
AC и
BC треугольника
ABC отметили
точки
P и
Q соответственно. Оказалось, что
AB=AP=BQ=1
, а точка пересечения отрезков
AQ и
BP
лежит на вписанной окружности треугольника
ABC .
Найдите периметр треугольника
ABC .
Страница:
<< 11 12 13 14
15 16 17 >> [Всего задач: 373]