Страница:
<< 1 2
3 >> [Всего задач: 12]
|
|
Сложность: 5 Классы: 8,9,10,11
|
На сторонах правильного девятиугольника $ABCDEFGHI$ во внешнюю сторону построили треугольники $XAB$, $YBC$, $ZCD$ и $TDE$. Известно, что углы $X$, $Y$, $Z$, $T$ этих треугольников равны $20^{\circ}$ каждый, а среди углов $XAB$, $YBC$, $ZCD$ и $TDE$ каждый следующий на $20^{\circ}$ больше предыдущего. Докажите, что точки $X$, $Y$, $Z$, $T$ лежат на одной окружности.
В пространстве даны точки
O1,
O2,
O3 и точка
A. Точка
A
симметрично отражается относительно точки
O1, полученная точка
A1
-- относительно
O2, полученная точка
A2 — относительно
O3.
Получаем некоторую точку
A3, которую также последовательно отражаем
относительно
O1,
O2,
O3. Доказать, что полученная точка совпадает с
A.
|
|
Сложность: 4- Классы: 8,9,10
|
Трапеция ABCD с основаниями AB и CD вписана в окружность Ω. Окружность ω проходит через точки C, D и пересекает отрезки CA, CB в точках A1, B1 соответственно. Точки A2 и B2 симметричны точкам A1 и B1 относительно середин отрезков CA и CB соответственно. Докажите, что точки A, B, A2 и B2 лежат на одной окружности.
|
|
Сложность: 3+ Классы: 8,9,10,11
|
Два четырехугольника $ABCD$ и $A_1B_1C_1D_1$ симметричны друг другу относительно точки $P$. Известно, что четырехугольники $A_1BCD$, $AB_1CD$ и $ABC_1D$ вписанные. Докажите, что $ABCD_1$ тоже вписанный.
|
|
Сложность: 4+ Классы: 9,10,11
|
Пусть точка
A' лежит на одной из сторон трапеции
ABCD , причём
прямая
AA' делит площадь трапеции пополам. Точки
B' ,
C' и
D' определяются аналогично. Докажите, что точка пересечения
диагоналей четырёхугольников
ABCD и
A'B'C'D' симметричны
относительно середины средней линии трапеции
ABCD .
Страница:
<< 1 2
3 >> [Всего задач: 12]