ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Среди всех треугольников, вписанных в данную окружность, найдите тот, у которого максимальна сумма квадратов длин сторон.

   Решение

Задачи

Страница: << 14 15 16 17 18 19 20 >> [Всего задач: 143]      



Задача 67250

Темы:   [ Вспомогательные подобные треугольники ]
[ Вневписанные окружности ]
Сложность: 4
Классы: 9,10,11

Автор: Терешин А.

В треугольнике $ABC$ вписанная окружность касается стороны $BC$ в точке $D$. Точка $M$ – середина дуги $BAC$ описанной окружности треугольника. Точки $P$ и $Q$ – проекции точки $M$ на внешние биссектрисы углов $B$ и $C$. Докажите, что прямая $PQ$ делит отрезок $AD$ пополам.
Прислать комментарий     Решение


Задача 67261

Темы:   [ Вписанные и описанные окружности ]
[ Вневписанные окружности ]
[ Угол между касательной и хордой ]
[ Величина угла между двумя хордами и двумя секущими ]
Сложность: 4
Классы: 9,10,11

Пусть I — центр вписанной окружности треугольника ABC, N — основание биссектрисы угла B. Касательная к описанной окружности треугольника AIN в вершине A и касательная к описанной окружности треугольника CIN в вершине C пересекаются в точке D. Докажите, что прямые AC и DI перпендикулярны.
Прислать комментарий     Решение


Задача 67407

Темы:   [ Вписанные и описанные окружности ]
[ Вневписанные окружности ]
Сложность: 4
Классы: 8,9,10,11

Дан треугольник $ABC$ с углом $A$, равным $60^\circ$. Его вписанная окружность касается стороны $AB$ в точке $D$, а вневписанная окружность, касающаяся стороны $AC$, касается продолжения стороны $AB$ в точке $E$. Докажите, что перпендикуляр к стороне $AC$, проходящий через точку $D$, вторично пересекает вписанную окружность в точке, равноудаленной от точек $E$ и $C$. (Вневписанной называется окружность, касающаяся одной из сторон треугольника и продолжений двух других его сторон.)
Прислать комментарий     Решение


Задача 87598

Темы:   [ Двугранный угол ]
[ Вневписанные окружности ]
Сложность: 4
Классы: 10,11

Пусть ABC – равносторонний треугольник. Через прямые AB , BC и AC проходят три плоскости, образующие угол ϕ с плоскостью ABC и пересекающиеся в точке D1 . Кроме того, через эти же прямые проходят плоскости, образующие угол 2ϕ с плоскостью ABC и пересекающиеся в точке D2 . Найдите ϕ , если известно, что точки D1 и D2 находятся на равных расстояниях от плоскости ABC .
Прислать комментарий     Решение


Задача 108702

Темы:   [ Четыре точки, лежащие на одной окружности ]
[ Вневписанные окружности ]
[ Медиана, проведенная к гипотенузе ]
Сложность: 4
Классы: 8,9

  Дан треугольник ABC. Вневписанная окружность касается стороны AC в точке B1 и продолжений сторон AB и BC в точках C1 и A1 соответственно. Окружность Ω с центром в точке A и радиусом AB1 вторично пересекает прямую A1B1 в точке L. Докажите, что точки C1, A, B1 и середина отрезка LA1 лежат на одной окружности.

Прислать комментарий     Решение

Страница: << 14 15 16 17 18 19 20 >> [Всего задач: 143]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .