Страница: << 9 10 11 12 13 14 15 >> [Всего задач: 144]
|
|
Сложность: 4 Классы: 8,9,10
|
Квадратный лист клетчатой бумаги разбит на меньшие квадраты отрезками, идущими по сторонам клеток.
Докажите, что сумма длин этих отрезков делится на 4. (Длина стороны клетки равна 1.)
|
|
Сложность: 4 Классы: 9,10,11
|
а) В треугольник ABC вписаны треугольники A1B1C1 и A2B2C2 так, что C1A1 ⊥ BC, A1B1 ⊥ CA, B1C1 ⊥ AB, B2A2 ⊥ BC, C2B2 ⊥ CA,
A2C2 ⊥ AB. Докажите, что эти треугольники равны.
б) Внутри треугольника ABC взяли точки A1, B1, C1, A2, B2, C2 так, что A1 - на отрезке AB1, B1 - на отрезке BC1, C1 – на отрезке CA1, A2 – на отрезке AC2, B2 – на отрезке BA2, C2 – на отрезке CB2 и углы BAA1, CBB1, ACC1, CAA2, ABB2, BCC2 равны. Докажите, что треугольники A1B1C1 и A2B2C2 равны.
|
|
Сложность: 4 Классы: 8,9,10,11
|
Дан треугольник $ABC$. Пусть $I$ – центр вневписанной окружности, касающейся стороны $AB$, а $A_1$ и $B_1$ – точки касания двух других вневписанных окружностей со сторонами $BC$ и $AC$ соответственно. Пусть $M$ – середина отрезка $IC$, а отрезки $AA_1$ и $BB_1$ пересекаются в точке $N$. Докажите, что точки $N$, $B_1$, $A$ и $M$ лежат на одной окружности.
|
|
Сложность: 4 Классы: 9,10,11
|
Дана система из n точек на плоскости, причём известно, что для любых двух
точек данной системы можно указать движение плоскости, при котором первая точка
перейдёт во вторую, а система перейдёт сама в себя. Доказать, что все точки
такой системы лежат на одной окружности.
Дан треугольник ABC. Две прямые, симметричные прямой AC относительно прямых AB и BC соответственно, пересекаются в точке K.
Докажите, что прямая BK проходит через центр O описанной около треугольника ABC окружности.
Страница: << 9 10 11 12 13 14 15 >> [Всего задач: 144]