Страница:
<< 43 44 45 46
47 48 49 >> [Всего задач: 303]
|
|
Сложность: 4 Классы: 8,9,10,11
|
Биссектриса угла $A$ треугольника $ABC$ при продолжении пересекает описанную около него окружность $\omega$ в точке $W$. Окружность $s$, построенная на отрезке $AH$ как на диаметре ($H$ – ортоцентр в треугольнике $ABC$), пересекает $\omega$ в точке $P$. Восстановите треугольник $ABC$, если остались точки $A$, $P$, $W$.
Дана фиксированная хорда MN окружности, не являющаяся диаметром. Для каждого диаметра AB этой окружности, не проходящего через точки M и N, рассмотрим точку C, в которой пересекаются прямые AM и BN, и проведём через неё прямую l, перпендикулярную AB.
Докажите, что все прямые l проходят через одну точку.
В треугольнике
ABC медианы
AD и
BE пересекаются в точке
M .
Докажите, что если угол
AMB а) прямой; б) острый, то
AC+BC >3
AB .
Окружность с центром
O вписана в четырёхугольник
ABCD
и касается его непараллельных сторон
BC и
AD в точках
E и
F соответственно. Пусть прямая
AO и отрезок
EF
пересекаются в точке
K , прямая
DO и отрезок
EF –
в точке
N , а прямые
BK и
CN – в точке
M . Докажите,
что точки
O ,
K ,
M и
N лежат на одной окружности.
В треугольнике ABC (AB > BC) K и M – середины сторон AB и AC, O – точка пересечения биссектрис. Пусть P – точка пересечения прямых KM и CO, а точка Q такова, что QP ⊥ KM и QM || BO. Докажите, что QO ⊥ AC.
Страница:
<< 43 44 45 46
47 48 49 >> [Всего задач: 303]