ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 46 47 48 49 50 51 52 >> [Всего задач: 303]      



Задача 52506

Темы:   [ Вписанный четырехугольник с перпендикулярными диагоналями ]
[ Вспомогательная окружность ]
[ Вписанный угол, опирающийся на диаметр ]
Сложность: 4+
Классы: 8,9

Докажите, что если диагонали вписанного четырёхугольника перпендикулярны, то середины его сторон и основания перпендикуляров, опущенных из точки пересечения его диагоналей на стороны, лежат на одной окружности.

Прислать комментарий     Решение


Задача 111715

Темы:   [ Описанные четырехугольники ]
[ Четыре точки, лежащие на одной окружности ]
[ Вписанный угол, опирающийся на диаметр ]
[ Диаметр, основные свойства ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Ортогональная (прямоугольная) проекция ]
Сложность: 4+
Классы: 8,9,10

Четырехугольник ABCD описан около окружности с центром I . Докажите, что проекции точек B и D на прямые IA и IC лежат на одной окружности.
Прислать комментарий     Решение


Задача 55600

Темы:   [ Четырехугольники (построения) ]
[ Прямоугольники и квадраты. Признаки и свойства ]
[ Вписанный угол, опирающийся на диаметр ]
Сложность: 5-
Классы: 8,9

С помощью циркуля и линейки постройте квадрат по четырём точкам, лежащим на четырёх его сторонах.

Прислать комментарий     Решение


Задача 78254

Темы:   [ ГМТ в пространстве (прочее) ]
[ Инверсия помогает решить задачу ]
[ Вписанный угол, опирающийся на диаметр ]
[ Конус (прочее) ]
Сложность: 5-
Классы: 10,11

Окружность S и точка O лежат в одной плоскости, причём O находится вне окружности. Построим произвольный шар, проходящий через окружность S, и опишем конус с вершиной в точке O и касающийся шара. Найти геометрическое место центров окружностей, по которым конусы касаются шаров.
Прислать комментарий     Решение


Задача 66257

Темы:   [ Треугольники с углами $60^\circ$ и $120^\circ$ ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
[ Прямоугольный треугольник с углом в $30^\circ$ ]
[ Вписанный угол, опирающийся на диаметр ]
[ Параллельные прямые, свойства и признаки. Секущие ]
[ Признаки и свойства параллелограмма ]
Сложность: 3
Классы: 8,9

В треугольнике ABC  ∠A = 60°,  точки M и N на сторонах AB и AC соответственно таковы, что центр описанной окружности треугольника ABC делит отрезок MN пополам. Найдите отношение  AN : MB.

Прислать комментарий     Решение

Страница: << 46 47 48 49 50 51 52 >> [Всего задач: 303]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .