Страница:
<< 48 49 50 51
52 53 54 >> [Всего задач: 303]
Даны окружность S и прямая l, не имеющие общих точек. Из точки P, движущейся по прямой l, проводятся касательные PA и PB к окружности S.
Докажите, что все хорды AB имеют общую точку.
Внутри треугольника ABC с острыми углами при вершинах A и C взята точка K, причём ∠AKB = 90°,
∠CKB = 180° – ∠C.
В каком отношении прямая BK делит сторону AC, если высота, опущенная на AC,
делит эту сторону в отношении λ, считая от вершины A?
В выпуклом четырёхугольнике ABCD углы B и D равны, CD = 4BC, а биссектриса угла A проходит через середину стороны CD.
Чему может быть равно отношение AD : AB?
На плоскости нарисован правильный шестиугольник, длина стороны которого равна 1. При помощи одной только линейки постройте отрезок, длина которого равна
Из точки C проведены две касательные к окружности, A и B – точки касания. На окружности взята точка M, отличная от A и B. Из точки M опущены перпендикуляры MN, ME, MD на стороны AB, BC, CA треугольника ABC соответственно. Найдите площадь треугольника MNE, если известны стороны MN = 4, MD = 2 и ∠ACB = 120°.
Страница:
<< 48 49 50 51
52 53 54 >> [Всего задач: 303]