Страница:
<< 47 48 49 50
51 52 53 >> [Всего задач: 303]
|
|
Сложность: 3 Классы: 8,9,10
|
Высоты AA' и BB' треугольника ABC пересекаются в точке H. Точки X и Y – середины отрезков AB и CH соответственно.
Доказать, что прямые XY и A'B' перпендикулярны.
Докажите, что в прямоугольном треугольнике медиана, проведённая к гипотенузе, равна её половине.
Прямая касается двух окружностей в точках A и B. Линия центров
пересекает первую окружность в точках E и C, а вторую – в точках D и F.
Докажите, что прямая AC либо параллельна, либо перпендикулярна BD.
|
|
Сложность: 3+ Классы: 9,10
|
Точки O и I – центры описанной и вписанной окружностей неравнобедренного треугольника ABC. Две равные окружности касаются сторон AB, BC и AC, BC соответственно; кроме этого, они касаются друг друга в точке K. Оказалось, что K лежит на прямой OI.
Найдите ∠BAC.
Точка M – середина хорды AB. Хорда CD пересекает AB в точке M. На отрезке CD как на диаметре построена полуокружность. Точка E лежит на этой полуокружности, и ME –
перпендикуляр к CD. Найдите угол AEB.
Страница:
<< 47 48 49 50
51 52 53 >> [Всего задач: 303]