Страница:
<< 46 47 48 49
50 51 52 >> [Всего задач: 1221]
|
|
Сложность: 4 Классы: 8,9,10
|
Приведённые квадратные трёхчлены f(x) и g(x) таковы, что уравнения f(g(x)) = 0 и g(f(x)) = 0 не имеют вещественных корней.
Докажите, что хотя бы одно из уравнений f(f(x)) = 0 и g(g(x)) = 0 тоже не имеет вещественных корней.
|
|
Сложность: 4 Классы: 8,9,10
|
На доске написано натуральное число. Если на доске написано число x, то можно дописать на нее число 2x + 1 или x/x+2. В какой-то момент выяснилось, что на доске присутствует число 2008. Докажите, что оно там было с самого начала.
|
|
Сложность: 4 Классы: 8,9,10
|
На доске выписано (n – 1)n выражений: x1 – x2, x1 – x3, ..., x1 – xn, x2 – x1, x2 – x3, ..., x2 – xn, ..., xn – xn–1, где n ≥ 3. Лёша записал в тетрадь все эти выражения, их суммы по два различных, по три различных и т. д. вплоть до суммы всех выражений. При этом Лёша во всех выписываемых суммах приводил подобные слагаемые (например, вместо (x1 – x2) +
(x2 – x3) Лёша запишет x1 – x3, а вместо (x1 – x2) + (x2 – x1) он запишет 0).
Сколько выражений Лёша записал в тетрадь ровно по одному разу?
|
|
Сложность: 4 Классы: 10,11
|
На плоскости лежит игла. Разрешается поворачивать иглу на 45° вокруг любого из её концов.
Можно ли, сделав несколько таких поворотов, добиться того, чтобы игла вернулась на исходное место, но при этом её концы поменялись местами?
Изначально на доске записаны 10 последовательных натуральных чисел.
За одну операцию разрешается выбрать любые два числа на доске (обозначим их a и b) и заменить их на числа a² – 2011b² и ab. После нескольких таких операций на доске не осталось ни одного из исходных чисел. Могли ли там опять оказаться 10 последовательных натуральных чисел (записанных в некотором порядке)?
Страница:
<< 46 47 48 49
50 51 52 >> [Всего задач: 1221]