Страница:
<< 189 190 191 192
193 194 195 >> [Всего задач: 1221]
|
|
Сложность: 4- Классы: 8,9,10
|
В вершинах куба записали восемь различных натуральных чисел, а на каждом его ребре – наибольший общий делитель двух чисел, записанных на концах этого ребра. Могла ли сумма всех чисел, записанных в вершинах, оказаться равной сумме всех чисел, записанных на рёбрах?
|
|
Сложность: 4- Классы: 9,10,11
|
Все стороны и диагонали правильного 12-угольника раскрашиваются в 12 цветов (каждый отрезок – одним цветом).
Существует ли такая раскраска, что для любых трёх цветов найдутся три вершины, попарно соединенные между собой отрезками этих цветов?
|
|
Сложность: 4- Классы: 8,9,10
|
Пусть a, b и c – попарно взаимно простые натуральные числа. Найдите все возможные значения
, если известно, что это число целое.
а) Имеются 300 яблок, любые два из которых различаются по весу не более чем в 2 раза.
Докажите, что их можно разложить в пакеты по два яблока так, чтобы любые два пакета различались по весу не более чем в 1,5 раза.
б) Имеются 300 яблок, любые два из которых различаются по весу не более чем в 3 раза.
Докажите, что их можно разложить в пакеты по четыре яблока так, чтобы любые два пакета различались по весу не более чем в 1,5 раза.
|
|
Сложность: 4- Классы: 9,10,11
|
Имеется таблица n×n, в n – 1 клетках которой записаны единицы, а в остальных клетках – нули. С таблицей разрешается проделывать следующую операцию: выбрать клетку, вычесть из числа, стоящего в этой клетке, единицу, а ко всем остальным числам, стоящим в одной строке или в одном столбце с выбранной клеткой, прибавить единицу. Можно ли из этой таблицы с помощью указанных операций получить таблицу, в которой все числа равны?
Страница:
<< 189 190 191 192
193 194 195 >> [Всего задач: 1221]