ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 88 89 90 91 92 93 94 >> [Всего задач: 694]      



Задача 87076

Темы:   [ Перпендикулярные плоскости ]
[ Двугранный угол ]
Сложность: 4
Классы: 8,9

Основание четырёхугольной пирамиды – квадрат, а все боковые грани – прямоугольные треугольники, у которых вершины прямых углов лежат на основании пирамиды. Найдите объём пирамиды, если её высота равна 1, а один из двугранных углов при вершине равен 120o .
Прислать комментарий     Решение


Задача 87085

Темы:   [ Двугранный угол ]
[ Теорема о трех перпендикулярах ]
Сложность: 4
Классы: 8,9

Основание пирамиды – треугольник со сторонами 10, 13, 13. Площади боковых граней соответственно равны 150, 195, 195. Найдите высоту пирамиды.
Прислать комментарий     Решение


Задача 87086

Темы:   [ Двугранный угол ]
[ Теорема о трех перпендикулярах ]
Сложность: 4
Классы: 8,9

Основание пирамиды – треугольник со сторонами 12, 12, 10. Площади боковых граней равны 100, 100, 120 соответственно. Найдите высоту пирамиды.
Прислать комментарий     Решение


Задача 87113

Темы:   [ Неравенства с трехгранными углами ]
[ Перпендикулярность прямой и плоскости (прочее) ]
Сложность: 4
Классы: 8,9

Пусть MC – перпендикуляр к плоскости треугольника ABC . Верно ли, что AMB < ACB ?
Прислать комментарий     Решение


Задача 87150

Темы:   [ Конус ]
[ Теорема о трех перпендикулярах ]
Сложность: 4
Классы: 8,9

Через ребро BC треугольной пирамиды PABC и точку M , середину ребра PA , проведено сечение BCM . Вершина конуса совпадает с вершиной P пирамиды, а окружность основания вписана в треугольник BCM , касаясь стороны BC в её середине. Точки касания окружности с отрезками BM и CM являются точками пересечения медиан граней APB и APC . Высота конуса в два раза больше радиуса основания. Найдите отношение площади боковой поверхности пирамиды к площади основания пирамиды.
Прислать комментарий     Решение


Страница: << 88 89 90 91 92 93 94 >> [Всего задач: 694]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .