Страница:
<< 44 45 46 47
48 49 50 >> [Всего задач: 519]
Точка O расположена на стороне AC треугольника ABC так, что CO : CA = 2 : 3. При повороте этого треугольника на некоторый угол вокруг точки O вершина B переходит в вершину C, а вершина A – в точку D, лежащую на стороне AB. Найдите отношение площадей треугольников BOD и ABC.
При повороте треугольника EFG на угол arccos ⅓ вокруг точки O, лежащей на стороне EG, вершина F переходит в вершину E, а вершина G – в точку H, лежащую на стороне FG. Найдите отношение, в котором точка O делит сторону EG.
Около окружности радиуса 3 описана равнобедренная трапеция ABCD (BC || AD), площадь которой равна 48. Окружность касается сторон AB и CD в точках K и L. Найдите KL.
В треугольнике ABC отрезок AD – биссектриса, AD = l, AB = c, AC = b. Найдите угол A.
Из точки A проведены к окружности две касательные (M и N – точки касания) и секущая, пересекающая эту окружность в точках B и C, а хорду MN – в точке P, AB : BC = 2 : 3. Найдите AP : PC.
Страница:
<< 44 45 46 47
48 49 50 >> [Всего задач: 519]