ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 19 20 21 22 23 24 25 >> [Всего задач: 136]      



Задача 108905

Темы:   [ Симметрия помогает решить задачу ]
[ Углы между биссектрисами ]
[ Три прямые, пересекающиеся в одной точке ]
Сложность: 3+
Классы: 8,9

В треугольнике ABC угол A равен 60°. На лучах BA и CA отложены отрезки BX и CY, равные стороне BC.
Докажите, что прямая XY проходит через точку пересечения биссектрис треугольника ABC.

Прислать комментарий     Решение

Задача 56717

Темы:   [ Радикальная ось ]
[ Пересекающиеся окружности ]
[ Три прямые, пересекающиеся в одной точке ]
[ Выход в пространство ]
Сложность: 4-
Классы: 9

На плоскости даны три попарно пересекающиеся окружности. Через точки пересечения каждых двух из них проведена прямая.
Докажите, что эти три прямые пересекаются в одной точке или параллельны.

Прислать комментарий     Решение

Задача 64910

Темы:   [ Медиана, проведенная к гипотенузе ]
[ Вписанные и описанные окружности ]
[ Три прямые, пересекающиеся в одной точке ]
[ Свойства биссектрис, конкуррентность ]
Сложность: 4-
Классы: 8,9

Пусть BM – медиана прямоугольного треугольника ABC  (∠B = 90°).  Окружность, вписанная в треугольник ABM, касается сторон AB, AM в точках A1, A2; аналогично определяются точки C1, C2. Докажите, что прямые A1A2 и C1C2 пересекаются на биссектрисе угла ABC.

Прислать комментарий     Решение

Задача 108092

Темы:   [ Конкуррентность высот. Углы между высотами. ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Три прямые, пересекающиеся в одной точке ]
[ Свойства биссектрис, конкуррентность ]
[ Вписанные и описанные окружности ]
Сложность: 4-
Классы: 8,9

В треугольнике ABC сторона AC наименьшая. На сторонах AB и CB взяты точки K и L соответственно, причём  KA = AC = CL.  Пусть M – точка пересечения AL и KC, а I – центр вписанной в треугольник ABC окружности. Докажите, что прямая MI перпендикулярна прямой AC.

Прислать комментарий     Решение

Задача 56902

Темы:   [ Теоремы Чевы и Менелая ]
[ Касающиеся окружности ]
[ Три прямые, пересекающиеся в одной точке ]
Сложность: 4
Классы: 9,10

Окружность S касается окружностей S1 и S2 в точках A1 и A2.
Докажите, что прямая A1A2 проходит через точку пересечения общих внешних или общих внутренних касательных к окружностям S1 и S2.

Прислать комментарий     Решение

Страница: << 19 20 21 22 23 24 25 >> [Всего задач: 136]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .