Страница:
<< 20 21 22 23
24 25 26 >> [Всего задач: 136]
|
|
Сложность: 4 Классы: 10,11
|
Пусть H и O – ортоцентр и центр описанной окружности треугольника ABC. Описанная окружность треугольника AOH, пересекает серединный перпендикуляр к BC в точке A1. Аналогично определяются точки B1 и C1. Докажите, что прямые AA1, BB1 и CC1 пересекаются в одной точке.
Точка X, лежащая вне непересекающихся окружностей ω1 и ω2, такова, что отрезки касательных, проведённых из X к ω1 и ω2, равны. Докажите, что точка пересечения диагоналей четырёхугольника, образованного точками касания, совпадает с точкой пересечения общих внутренних касательных к ω1 и ω2.
|
|
Сложность: 4 Классы: 8,9,10,11
|
Четырёхугольник ABCD описан около окружности, лучи BA и CD пересекаются в точке E, лучи BC и AD – в
точке F. Вписанная окружность треугольника, образованного прямыми AB, CD и биссектрисой угла B, касается прямой AB в точке K, а вписанная окружность треугольника, образованного прямыми AD, BC и биссектрисой угла B, касается прямой BC в точке L. Докажите, что прямые KL, AC и EF пересекаются в одной точке.
Точка E – середина той дуги AB описанной окружности треугольника ABC, на которой лежит точка C; C1 – середина стороны AB. Из точки E опущен перпендикуляр EF на AC. Докажите, что:
а) прямая C1F делит пополам периметр треугольника ABC;
б) три такие прямые, построенные для каждой стороны треугольника,
пересекаются в одной точке.
|
|
Сложность: 4+ Классы: 9,10,11
|
Дан неравнобедренный треугольник ABC, AA1 – его биссектриса, A2 – точка касания вписанной окружности со стороной BC. Аналогично определяются точки B1, B2, C1, C2. Пусть O – центр описанной окружности треугольника, I – центр вписанной окружности. Докажите, что радикальный центр описанных окружностей треугольников AA1A2, BB1B2, CC1C2, лежит на прямой OI.
Страница:
<< 20 21 22 23
24 25 26 >> [Всего задач: 136]