ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 17 18 19 20 21 22 23 >> [Всего задач: 136]      



Задача 65021

Темы:   [ Вписанные и описанные окружности ]
[ Три прямые, пересекающиеся в одной точке ]
[ Свойства симметрий и осей симметрии ]
[ Проективная геометрия (прочее) ]
[ Изогональное сопряжение ]
Сложность: 5-
Классы: 9,10,11

Автор: Ивлев Ф.

Вписанная окружность остроугольного треугольника ABC касается его сторон AB, BC, CA в точках C1, A1, B1 соответственно. Пусть A2, B2 – середины отрезков B1C1, A1C1 соответственно, O – центр описанной окружности треугольника ABC, P – одна из точек пересечения прямой CO с вписанной окружностью. Прямые PA2 и PB2 вторично пересекают вписанную окружность в точках A' и B'. Докажите, что прямые AA' и BB' пересекаются на высоте треугольника, опущенной на AB.

Прислать комментарий     Решение

Задача 66226

Темы:   [ Вписанные и описанные окружности ]
[ Три прямые, пересекающиеся в одной точке ]
[ Проективная геометрия (прочее) ]
Сложность: 5-
Классы: 9,10,11

В треугольнике ABC прямая m касается вписанной окружности ω. Прямые, проходящие через центр I окружности ω и перпендикулярные AI, BI, CI, пересекают прямую m в точках A', B', C' соответственно. Докажите, что прямые AA', BB', CC' пересекаются в одной точке.

Прислать комментарий     Решение

Задача 115873

Темы:   [ Вписанные и описанные окружности ]
[ Три прямые, пересекающиеся в одной точке ]
[ Прямая Симсона ]
[ Теорема Карно ]
Сложность: 5-
Классы: 8,9,10,11

Дан треугольник ABC и точки X, Y, не лежащие на его описанной окружности Ω. Пусть A1, B1, C1 – проекции X на BC, CA, AB, а A2, B2, C2 – проекции Y. Докажите, что перпендикуляры, опущенные из A1, B1, C1 на, соответственно, B2C2, C2A2, A2B2, пересекаются в одной точке тогда и только тогда, когда прямая XY проходит через центр Ω.

Прислать комментарий     Решение

Задача 115878

Темы:   [ Четырехугольники (прочее) ]
[ Три прямые, пересекающиеся в одной точке ]
[ Решение задач при помощи аффинных преобразований ]
[ Аналитический метод в геометрии ]
Сложность: 5-
Классы: 8,9,10,11

Автор: Нилов Ф.

Дан четырёхугольник ABCD, противоположные стороны которого пересекаются в точках P и Q. Две прямые, проходящие через эти точки, пересекают стороны четырёхугольника в четырёх точках, являющихся вершинами параллелограмма. Докажите, что центр этого параллелограмма лежит на прямой, соединяющей середины диагоналей ABCD.

Прислать комментарий     Решение

Задача 64471

Темы:   [ Вписанные и описанные окружности ]
[ Три прямые, пересекающиеся в одной точке ]
[ Преобразования плоскости (прочее) ]
[ Теорема синусов ]
Сложность: 5
Классы: 9,10,11

Автор: Ивлев Ф.

Вписанная в треугольник ABC окружность касается сторон BC, CA, AB в точках A', B', C' соответственно. Перпендикуляр, опущенный из центра I этой окружности на медиану CM, пересекает прямую A'B' в точке K. Докажите, что  CK || AB.

Прислать комментарий     Решение

Страница: << 17 18 19 20 21 22 23 >> [Всего задач: 136]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .