Страница:
<< 16 17 18 19
20 21 22 >> [Всего задач: 137]
|
|
Сложность: 3 Классы: 9,10,11
|
Основания описанной трапеции равны 2 и 11. Докажите, что продолжения боковых сторон трапеции пересекаются под острым углом.
В выпуклый четырёхугольник ABCD вписана окружность с центром в точке O, причём AO = OC, BC = 5, CD = 12, а угол DAB прямой.
Найдите площадь четырёхугольника ABCD.
К двум окружностям различного радиуса проведены общие внешние касательные AB и CD. Докажите, что четырёхугольник ABCD описанный
тогда и только тогда, когда окружности касаются.
Докажите, что проекции точки пересечения диагоналей вписанного четырёхугольника на его стороны являются вершинами описанного четырёхугольника, если только они не попадают на продолжения сторон.
Четырёхугольник KLMN – вписанный и описанный одновременно;
A и B – точки касания вписанной окружности со сторонами
KL и MN.
Докажите, что AK·BM = r², где r – радиус вписанной окружности.
Страница:
<< 16 17 18 19
20 21 22 >> [Всего задач: 137]