ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 144]      



Задача 115602

Темы:   [ Пересекающиеся окружности ]
[ Вписанные четырехугольники ]
Сложность: 3
Классы: 8,9

K и M — точки пересечения двух окружностей. Из точки K проведены два луча, один из которых пересекает первую окружность в точке A , а вторую в точке B ; другой пересекает первую окружность в точке C , вторую в точке D . Докажите, что углы MAB и MCD равны.
Прислать комментарий     Решение


Задача 55602

Темы:   [ Пересекающиеся окружности ]
[ Серединный перпендикуляр к отрезку (ГМТ) ]
Сложность: 3
Классы: 8,9

Докажите, что общая хорда двух окружностей перпендикулярна прямой, соединяющей их центры.

Прислать комментарий     Решение


Задача 52570

Темы:   [ Пересекающиеся окружности ]
[ Вписанный угол равен половине центрального ]
Сложность: 3
Классы: 8,9

Точки A и B соединены двумя дугами окружностей, обращенными выпуклостями в разные стороны: $ \cup$ ACB = 117o23' и $ \cup$ ADB = 42o37'. Середины C и D этих дуг соединены с точкой A. Найдите угол CAD.

Прислать комментарий     Решение


Задача 52430

Темы:   [ Пересекающиеся окружности ]
[ Угол между касательной и хордой ]
[ Признаки подобия ]
Сложность: 3+
Классы: 8,9

Даны две окружности, пересекающиеся в точках A и D; AB и CD – касательные к первой и второй окружностям (B и C – точки на окружностях).
Докажите, что  AC : BD = CD² : AB².

Прислать комментарий     Решение

Задача 53086

Темы:   [ Пересекающиеся окружности ]
[ Теорема Пифагора (прямая и обратная) ]
[ Средняя линия трапеции ]
[ Теорема о сумме квадратов диагоналей ]
Сложность: 3+
Классы: 8,9

Две окружности радиусов   и   пересекаются в точке A. Расстояние между центрами окружностей равно 3. Через точку A проведена прямая, пересекающая окружности в точках B и C так, что  AB = AC  (точка B не совпадает с C). Найдите AB.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 144]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .