ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи На стороне AC треугольника ABC взята точка A1, а на продолжении стороны BC за точку C взята точка C1, длина отрезка A1C равна 85% длины стороны AC, а длина отрезка BC1 равна 120% длины стороны BC. Сколько процентов площади треугольника ABC составляет площадь треугольника A1BC1? Около сферы описан пространственный четырёхугольник. Доказать, что точки касания лежат в одной плоскости. Найти натуральное наименьшее целое число n такое, что n делится на 19, а n+2 делится на 82. Найти такое трёхзначное число, удвоив которое, мы получим число, выражающее количество цифр, необходимое для написания всех последовательных целых чисел от единицы до этого искомого трёхзначного числа (включительно). В треугольнике ABC угол C – прямой. Из центра C
радиусом AC описана дуга, пересекающая гипотенузу в точке D, а катет CB – в точке E. В футбольном чемпионате участвовали 16 команд. Каждая команда сыграла с каждой из остальных по одному разу, за победу давалось 3 очка, за ничью – 1 очко, за поражение – 0. Назовём команду успешной, если она набрала хотя бы половину от наибольшего возможного количества очков. Какое наибольшее количество успешных команд могло быть в турнире? У квадратного уравнения x² + px + q = 0 коэффициенты p и q увеличили на единицу. Эту операцию повторили четыре раза. Приведите пример такого исходного уравнения, что у каждого из пяти полученных уравнений корни были бы целыми числами. Дано трёхзначное число, у которого первая и последняя цифра одинаковые. Отрезки, соединяющие основания высот остроугольного треугольника, образуют прямоугольный треугольник с гипотенузой, равной 10. Найдите радиус окружности, описанной около исходного треугольника. Докажите, что среди любых 11 чисел найдутся два, разность которых делится на десять. На доске записаны числа 1, 21, 2², 2³, 24, 25. Разрешается стереть любые два числа и вместо них записать их разность – неотрицательное число. Внутри правильного n-угольника со стороной a вписано n равных кругов так, что каждый круг касается двух смежных сторон многоугольника и двух соседних кругов. Найти площадь "звёздочки", ограниченной только дугами вписанных кругов. Каждая диагональ четырёхугольника разбивает его на два равнобедренных треугольника. Верно ли, что четырёхугольник – ромб? На гипотенузе AB прямоугольного треугольника ABC во внешнюю сторону построен квадрат ABDE. Известно, что AC = 1, BC = 3. Игра со спичками. На столе лежит 37 спичек. Разрешается по очереди брать не более 5 спичек. Выигрывает тот, кто возьмет последнюю. Кто выигрывает при правильной игре? |
Задача 102818
УсловиеИгра со спичками. На столе лежит 37 спичек. Разрешается по очереди брать не более 5 спичек. Выигрывает тот, кто возьмет последнюю. Кто выигрывает при правильной игре? РешениеНачинающий первым ходом берет одну спичку, а затем каждый раз дополняет число спичек, взятых соперником, до 6 (докажите, что так можно!) и выигрывает. Источники и прецеденты использования |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке