ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи В треугольнике ABC ∠A=60∘, AD – биссектриса. Построен равносторонний треугольник PDQ с высотой DA. Прямые PB и QC пересекаются в точке K. Докажите, что AK – симедиана треугольника ABC. В остроугольный треугольник ABC вписана окружность с центром I, касающаяся сторон AB, BC и CA в точках D, E и F соответственно. В четырёхугольники ADIF и BDIE вписаны окружности с центрами J1 и J2 соответственно. Прямые J1J2 и AB пересекаются в точке M. Докажите. что CD ⊥ IM.
На координатной плоскости дан выпуклый пятиугольник
ABCDE с вершинами в целых точках. Докажите, что внутри или на границе
пятиугольника A1B1C1D1E1 (см. рис.) есть хотя бы одна целая точка.
Если Конек-Горбунок не будет семь суток есть, или спать, то лишится волшебной силы. Допустим, он в течение недели не ел и не спал. Что он должен сделать в первую очередь к концу седьмых суток — поесть или поспать, чтобы не потерять силу? Попробуйте найти два числа, идущих подряд; у первого из которых сумма цифр равна 8, а второе делится на 8. Комплект косточек домино выложен в виде прямоугольника 8×7 клеток.
Попробуйте определить, как расположены косточки? Внутри прямоугольного треугольника АВС выбрана произвольная точка Р, из которой опущены перпендикуляры PK и РМ на катеты АС и ВС соответственно. Прямые АР и ВР пересекают катеты в точках A' и B' соответственно. Известно, что SAPB' : SKPB' = m. Найдите SMPA' : SBPA'. Четыре мышонка: Белый, Серый, Толстый и Тонкий делили головку сыра. Они разрезали её на 4 внешне одинаковые дольки. В некоторых дольках оказалось больше дырок, поэтому долька Тонкого весила на 20 г меньше дольки Толстого, а долька Белого — на 8 г меньше дольки Серого. Однако Белый не расстроился, т.к. его долька весила ровно четверть от массы всего сыра. Серый отрезал от своего куска 8 г, а Толстый — 20 г. Как мышата должны поделить образовавшиеся 28 г сыра, чтобы у всех сыра стало поровну? Не забудьте пояснить свой ответ. Клетчатая полоска 1×1000000 разбита на 100 сегментов. В каждой клетке записано целое число, причём в клетках, лежащих в одном сегменте, числа совпадают. В каждую клетку поставили по фишке. Затем сделали такую операцию: все фишки одновременно передвинули, каждую – на то количество клеток вправо, которое указано в её клетке (если число отрицательно, то фишка двигается влево); при этом оказалось, что в каждую клетку снова попало по фишке. Эту операцию повторяют много раз. Для каждой фишки первого сегмента подсчитали, через сколько операций она впервые снова окажется в этом сегменте. Докажите, что среди полученных чисел не более 100 различных. С помощью циркуля и линейки постройте окружность, касающуюся двух данных окружностей и проходящую через данную точку, лежащую вне этих окружностей.
В равнобедренной трапеции с основаниями 1 и 4 расположены две окружности, каждая из которых касается другой окружности, двух боковых сторон и одного из оснований. Найдите площадь трапеции.
Докажите, что если числа x, y, z при некоторых значениях p и q являются решениями системы Докажите или опровергните следующее утверждение: периметр ромба с диагоналями длины 1 и 3 больше длины окружности радиуса 1. В треугольнике ABC M – точка пересечения медиан, I – центр вписанной окружности, A1 и B1 – точки касания этой окружности со сторонами BC и AC, G – точка пересечения прямых AA1 и BB1. Докажите, что угол CGI прямой тогда и только тогда, когда GM || AB. Положительные числа х1, ..., хk удовлетворяют неравенствам По кругу расставлены 10 железных гирек. Между каждыми соседними гирьками находится бронзовый шарик. Масса каждого шарика равна разности масс соседних с ним гирек. Докажите, что шарики можно разложить на две чаши весов так, чтобы весы уравновесились. |
Задача 107798
Условие
По кругу расставлены 10 железных гирек. Между каждыми соседними гирьками
находится бронзовый шарик. Масса каждого шарика равна разности масс соседних с
ним гирек. Докажите, что шарики можно разложить на две чаши весов так, чтобы
весы уравновесились.
РешениеОбозначим массы гирек через mi, а массы шариков — через xi. Имеем
(m1 - m2) + (m2 - m3) + ... + (m9 - m10) + (m10 - m1) = 0.
Действительно, каждое mi входит в эту сумму два раза: один раз со знаком
"+", а второй раз — со знаком "-". Поэтому все mi
сократятся.
Заметим, что каждая из величин в скобках (mi - mi + 1) по модулю равна массе i-го шарика. Значит, это равенство можно переписать так:
±x1±x2±...±x9±x10 = 0,
где перед некоторыми xi стоит знак "+", а перед остальными —
"-". Положим все шарики xi, перед которыми стоят знаки "+" на
левую чашу весов, а остальные — на правую. Ясно, что весы будут в
равновесии.
Источники и прецеденты использования |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке