Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 24 задачи
Версия для печати
Убрать все задачи

Стороны треугольника равны 3, 4 и 5. Биссектрисы внешних углов треугольника продолжены до пересечения с продолжениями сторон.
Докажите, что одна из трёх полученных точек есть середина отрезка, соединяющего две другие.

Вниз   Решение


Чичиков играет с Ноздрёвым. Сначала Ноздрёв раскладывает 222 ореха по двум коробочкам. Посмотрев на раскладку, Чичиков называет любое целое число N от 1 до 222. Далее Ноздрёв должен переложить, если надо, один или несколько орехов в пустую третью коробочку и предъявить Чичикову одну или две коробочки, где в сумме ровно N орехов. В результате Чичиков получит столько мертвых душ, сколько орехов переложил Ноздрёв. Какое наибольшее число душ может гарантировать себе Чичиков, как бы ни играл Ноздрёв.

ВверхВниз   Решение


Рассматривается шестиугольник, который является пересечением двух (не обязательно равных) правильных треугольников.
Докажите, что если параллельно перенести один из треугольников, то периметр пересечения (если оно остаётся шестиугольником), не меняется.

ВверхВниз   Решение


Даны 11 гирь разного веса (одинаковых нет), каждая весит целое число граммов. Известно, что как ни разложить гири (все или часть) на две чаши, чтобы гирь на них было не поровну, всегда перевесит чаша, на которой гирь больше. Докажите, что хотя бы одна из гирь весит более 35 граммов.

ВверхВниз   Решение


Внутри угла расположены две окружности с центрами A и B. Они касаются друг друга и двух сторон угла.
Докажите, что окружность с диаметром AB касается сторон угла.

ВверхВниз   Решение


В треугольнике одна сторона в три раза меньше суммы двух других. Докажите, что против этой стороны лежит наименьший угол треугольника.

ВверхВниз   Решение


В треугольнике ABC точки A', B', C' лежат на сторонах BC, CA и AB соответственно. Известно, что  ∠AC'B' = ∠B'A'C,  ∠CB'A' = ∠A'C'B,  ∠BA'C' = ∠C'B'A.  Докажите, что точки A', B', C' – середины сторон треугольника ABC.

ВверхВниз   Решение


В некоторых клетках квадрата 11×11 стоят плюсы, причём всего плюсов чётное количество. В каждом квадратике 2×2 тоже чётное число плюсов.
Докажите, что чётно и число плюсов в 11 клетках главной диагонали квадрата.

ВверхВниз   Решение


Автор: Стунжас Л.

Существуют ли такие две функции  f и g, принимающие только целые значения, что для любого целого x выполнены соотношения:
  а)  f(f(x)) = x,  g(g(x)) = x,   f(g(x)) > x,  g(f(x)) > x?
  б)  f(f(x)) < x, g(g(x)) < x,   f(g(x)) > x,  g(f(x)) > x?

ВверхВниз   Решение


D – точка на стороне BC треугольника ABC. B треугольники ABD, ACD вписаны окружности, и к ним проведена общая внешняя касательная (отличная от BC), пересекающая AD в точке K. Докажите, что длина отрезка AK не зависит от положения точки D на BC.

ВверхВниз   Решение


На длинной скамейке сидели мальчик и девочка. Затем по одному пришли ещё 20 детей, и каждый садился между какими-то двумя уже сидящими. Назовём девочку отважной, если она садилась между двумя соседними мальчиками, а мальчика – отважным, если он садился между двумя соседними девочками. В итоге оказалось, что мальчики и девочки на скамейке чередуются. Можно ли наверняка сказать, сколько отважных среди детей на скамейке?

ВверхВниз   Решение


Две окружности пересекаются в точках A и B. В точке A к обеим проведены касательные, пересекающие окружности в точках M и N. Прямые BM и BN пересекают окружности еще раз в точках P и Q (P – на прямой BM, Q – на прямой BN). Докажите, что отрезки MP и NQ равны.

ВверхВниз   Решение


Из центра O правильного n-угольника A1A2...An проведены n векторов в его вершины. Даны такие числа  a1, a2, ..., an,  что
a1 > a2 > ... > an > 0.  Докажите, что линейная комбинация векторов     отлична от нулевого вектора.

ВверхВниз   Решение


Найдите геометрическом место ортоцентров (точек пересечения высот) всевозможных треугольников, вписанных в данную окружность.

ВверхВниз   Решение


Треугольник ABC вписан в окружность. Точка A1 диаметрально противоположна точке A, точка A0 – середина стороны BC, точка A2 симметрична точке A1 относительно точки A0. Точки B2 и C2 определяются аналогично. Докажите, что точки A2, B2 и C2 совпадают.

ВверхВниз   Решение


Угол при вершине A равнобедренного треугольника ABC  (AB = AC)  равен 20°. На стороне AB отложим отрезок AD, равный BC. Найдите угол BCD.

ВверхВниз   Решение


На бесцветной плоскости покрасили три произвольные точки: одну – в красный цвет, другую – в синий, третью –` в жёлтый. Каждым ходом выбирают на плоскости любые две точки двух из этих цветов и окрашивают еще одну точку в оставшийся цвет так, чтобы эти три точки образовали равносторонний треугольник, в котором цвета вершин идут в порядке "красный, синий, жёлтый" (по часовой стрелке). При этом разрешается красить и уже окрашенную точку плоскости (считаем, что точка может иметь одновременно несколько цветов). Докажите, что сколько бы ходов ни было сделано, все точки одного цвета будут лежать на одной прямой.

ВверхВниз   Решение


На доске 8×8 стоят 8 не бьющих друг друга ладей. Все клетки доски распределяются во владения этих ладей по следующему правилу. Клетка, на которой стоит ладья, отдаётся этой ладье. Клетку, которую бьют две ладьи, получает та из ладей, которая ближе к этой клетке; если же эти две ладьи равноудалены от клетки, то каждая из них получает по полклетки. Докажите, что площади владений всех ладей одинаковы.

ВверхВниз   Решение


Прямая отсекает от правильного 10-угольника ABCDEFGHIJ со стороной 1 треугольник PAQ, в котором  PA + AQ = 1.
Найдите сумму углов, под которыми виден отрезок PQ из вершин B, C, D, E, F, G, H, I, J.

ВверхВниз   Решение


В треугольнике ABC на стороне AB выбрана точка D, отличная от B, причём  AD : DC = AB : BC.  Докажите, что угол C тупой.

ВверхВниз   Решение


В параллелограмме ABCD, не являющемся ромбом, проведена биссектриса угла BAD. K и L – точки её пересечения с прямыми BC и CD соответственно. Докажите, что центр окружности, проведённой через точки C, K и L, лежит на окружности, проведённой через точки B, C и D.

ВверхВниз   Решение


Автор: Рудаков И.

На катетах прямоугольного треугольника ABC с прямым углом C вовне построили квадраты ACKL и BCMN; CE – высота треугольника. Докажите, что угол LEM прямой.

ВверхВниз   Решение


Из точки O, лежащей внутри выпуклого n-угольника A1A2...An, проведены отрезки ко всем вершинам: OA1, OA2, ..., OAn . Оказалось, что все углы между этими отрезками и прилегающими к ним сторонами n-угольника – острые, причём  ∠OA1An ≤ ∠OA1A2,  ∠OA2A1 ≤ ∠OA2A3,  ...,
OAn–1An–2 ≤ ∠OAn–1An,  ∠OAnAn–1 ≤ ∠OAnA1.  Докажите, что O – центр окружности, вписанной в n-угольник.

ВверхВниз   Решение


Квадрат ABCD и окружность пересекаются в восьми точках так, что образуются четыре криволинейных треугольника:  AEF, BGH, CIJ, DKL  (EF, GH, IJ, KL – дуги окружности). Докажите, что
  а) сумма длин дуг EF и IJ равна сумме длин дуг GH и KL;
  б) сумма периметров криволинейных треугольников AEF и CIJ равна сумме периметров криволинейных треугольников BGH и DKL.

Вверх   Решение

Задача 108613
Темы:    [ Диаметр, основные свойства ]
[ Прямоугольники и квадраты. Признаки и свойства ]
Сложность: 3
Классы: 8,9
Из корзины
Прислать комментарий

Условие

Квадрат ABCD и окружность пересекаются в восьми точках так, что образуются четыре криволинейных треугольника:  AEF, BGH, CIJ, DKL  (EF, GH, IJ, KL – дуги окружности). Докажите, что
  а) сумма длин дуг EF и IJ равна сумме длин дуг GH и KL;
  б) сумма периметров криволинейных треугольников AEF и CIJ равна сумме периметров криволинейных треугольников BGH и DKL.


Подсказка

Проведите два взаимно перпендикулярных диаметра окружности, параллельных соседним сторонам квадрата.


Решение

а) Проведём два взаимно перпендикулярных диаметра окружности, параллельных сторонам AB и BC квадрата. Эти диаметры делят дуги окружности, лежащие вне квадрата, пополам, так как делят пополам хорды, стягивающие эти дуги. Поэтому сумма дуг EF и IJ получается так: нужно из двух противоположных четвертей окружности выкинуть половинки дуг, лежащих вне квадрата. Точно так же для суммы дуг GH и KL.

б) Поскольку проведённые диаметры делят пополам хорды окружности, высекаемые на сторонах квадрата, то в каждой из пар вертикальных углов, образованных этими диаметрами, лежат отрезки, сумма длин которых равна половине периметра квадрата. Следовательно, суммы прямолинейных сторон соответствующих пар треугольников равны.

Замечания

1. Утверждение верно не только для квадрата, но и для прямоугольника.

2. Баллы: 2 + 2.

3. Ср. с задачей М1033 из Задачника "Кванта".

Источники и прецеденты использования

олимпиада
Название Турнир городов
Турнир
Дата 1986/1987
Номер 8
вариант
Вариант осенний тур, 7-8 класс
Задача
Номер 2

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .