ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Решите в целых числах уравнение (x² – y²)² = 1 + 16y.
Определите угол A между сторонами 2 и 4, если медиана, проведённая из
вершины A, равна
а) Наконец, у Снежной Королевы появились все квадраты с целыми сторонами, но каждый в единственном экземпляре. Королева пообещала Каю, что он станет мудрым, если сможет из каких-то имеющихся квадратов сложить прямоугольник. Сможет ли он это сделать?
На сторонах треугольника ABC как на гипотенузах строятся во внешнюю сторону равнобедренные прямоугольные треугольники ABD , BCE и ACF . Докажите, что отрезки DE и BF равны и перпендикулярны.
Две окружности касаются внешним образом. Их радиусы
относятся как 3:1, а длина их общей внешней касательной
равна 6 В выпуклом четырёхугольнике ABCD диагонали AC и BD пересекаются в точке O . Точки K , L , M и N лежат на сторонах AB , BC , CD и AD соответственно, причём точка O лежит на отрезках KM и LN и делит их пополам. Докажите, что ABCD — параллелограмм. Через точку на ребре треугольной пирамиды проведены две плоскости, параллельные двум граням пирамиды. Эти плоскости отсекают две треугольные пирамиды. Разрежьте оставшийся многогранник на две треугольные призмы. На бесконечной в обе стороны полосе из клеток, пронумерованных целыми числами, лежит несколько камней (возможно, по нескольку в одной клетке). Разрешается выполнять следующие действия:
В треугольнике ABC сторона AC наименьшая. На сторонах AB и CB взяты точки K и L соответственно, причём KA = AC = CL. Пусть M – точка пересечения AL и KC, а I – центр вписанной в треугольник ABC окружности. Докажите, что прямая MI перпендикулярна прямой AC. Малыш и Карлсон вместе съели банку варенья. При этом Карлсон съел на 40% меньше ложек варенья, чем Малыш, но зато в его ложке помещалось на 150% варенья больше, чем в ложке Малыша. Какую часть банки варенья съел Карлсон?
Докажите, что площадь треугольника равна половине произведения двух его высот, делённого на синус угла между сторонами, на которые эти высоты опущены, т.е.
S
где ha и hb — высоты, опущенные на стороны, равные a и b,
а
Лёша и Ира живут в доме, на каждом этаже которого 9 квартир (в доме один подъезд). Номер этажа Лёши равен номеру квартиры Иры, а сумма номеров их квартир равна 329. Каков номер квартиры Лёши?
Найти такие числа A,B,C,a,b,c , чтобы имело место тождество
На сторонах AB и BC остроугольного треугольника ABC построены как на основаниях равнобедренные треугольники AFB и BLC, причём один из них лежит внутри треугольника ABC, а другой построен во внешнюю сторону. При этом ∠AFB = ∠BLC и ∠CAF = ∠ACL. Докажите, что прямая FL отсекает от угла ABC равнобедренный треугольник. |
Задача 108891
УсловиеНа сторонах AB и BC остроугольного треугольника ABC построены как на основаниях равнобедренные треугольники AFB и BLC, причём один из них лежит внутри треугольника ABC, а другой построен во внешнюю сторону. При этом ∠AFB = ∠BLC и ∠CAF = ∠ACL. Докажите, что прямая FL отсекает от угла ABC равнобедренный треугольник. РешениеОбозначим ∠A = α, ∠C = γ. Для определённости будем считать, что вершины A, B и C треугольника ABC ориентированы по часовой стрелке и α ≥ γ. Тогда треугольник AFB отложен во внутреннюю сторону, треугольник BLC – во внешнюю (см. рис.). φ = ½ (α – γ). Треугольник BAC переходит в треугольник BFL при поворотной гомотетии с центром B, коэффициентом BF/BA = BL/LC и углом поворота φ против часовой стрелки. Значит, (ориентированная) прямая FL получается из (ориентированной) прямой AC поворотом на угол φ против часовой стрелки. Следовательно, угол между лучами FL и AB равен ∠A – φ = α – ½ (α – γ) = ½ (α + γ), а аналогичный угол между FL и BC равен γ + φ = ½ (α + γ). Поскольку эти два угла равны, треугольник, отсекаемый прямой FL от угла BAC, – равнобедренный. Источники и прецеденты использования
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке