Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 12 задач
Версия для печати
Убрать все задачи

Составьте уравнение прямой, проходящей через точку M(- 3;2) параллельно прямой 2x - 3y + 4 = 0.

Вниз   Решение


Даны два выпуклых многоугольника. Известно, что расстояние между любыми двумя вершинами первого не больше 1 , расстояние между любыми двумя вершинами второго также не больше 1, а расстояние между любыми двумя вершинами разных многоугольников больше, чем 1/ . Докажите, что многоугольники не имеют общих внутренних точек.

ВверхВниз   Решение


Ребро правильного тетраэдра ABCD равно a . На рёбрах AB и CD взяты точки E и F так, что описанная около тетраэдра сфера пересекает прямую, проходящую через E и F , в точках M и N . Найдите длину отрезка EF , если ME:EF:FN=3:12:4 .

ВверхВниз   Решение


Зависимость температуры (в градусах Кельвина) от времени (в минутах) для нагревательного элемента некоторого прибора была получена экспериментально и на исследуемом интервале температур задаётся выражением T(t) = T0+at+bt2 , где T0 = 1160 К, a = 34 К/мин, b = -0,2 К/ мин2 . Известно, что при температурах нагревателя свыше 2000 К прибор может испортиться, поэтому его нужно отключать. Определите (в минутах) через какое наибольшее время после начала работы нужно отключать прибор.

ВверхВниз   Решение


Обозначим S(x) сумму цифр числа x . Найдутся ли три таких натуральных числа a , b и c , что S(a+b)<5 , S(a+c)<5 и S(b+c)<5 , но S(a+b+c)>50 ?

ВверхВниз   Решение


В пространстве заданы три луча: DA , DB и DC , имеющие общее начало D , причём ADB = ADC = BDC = 90o . Сфера пересекает луч DA в точках A1 и A2 , луч DB – в точках B1 и B2 , луч DC – в точках C1 и C2 . Найдите площадь треугольника A2B2C2 , если площади треугольников DA1B1 , DA1C1 , DB1C1 и DA2B2 равны соответственно , 10, 6 и 40.

ВверхВниз   Решение


Даны точки  A(3, 5),  B(–6, –2)  и  C(0, –6).  Докажите, что треугольник ABC равнобедренный.

ВверхВниз   Решение


На столе лежат пять часов со стрелками. Разрешается любые несколько из них перевести вперёд. Для каждых часов время, на которое при этом их перевели, назовём временем перевода. Требуется все часы установить так, чтобы они показывали одинаковое время. За какое наименьшее суммарное время перевода это можно гарантированно сделать?

ВверхВниз   Решение


Найдите все простые p, для каждого из которых существуют такие натуральные x и y, что  px = y³ + 1.

ВверхВниз   Решение


Зависимость температуры (в градусах Кельвина) от времени (в минутах) для нагревательного элемента некоторого прибора была получена экспериментально и на исследуемом интервале температур задаётся выражением T(t) = T0+at+bt2 , где T0 = 200 К, a = 75 К/мин, b = -0,5 К/ мин2 . Известно, что при температурах нагревателя свыше 1500 К прибор может испортиться, поэтому его нужно отключать. Определите (в минутах) через какое наибольшее время после начала работы нужно отключать прибор.

ВверхВниз   Решение


Пусть a, b, c – длины сторон произвольного треугольника; p – полупериметр; r – радиус вписанной окружности. Докажите неравенство

ВверхВниз   Решение


B пирамиду, основанием которой служит параллелограмм, можно вписать сферу.
Докажите, что суммы площадей её противоположных боковых граней равны.

Вверх   Решение

Задача 116193
Темы:    [ Четырехугольная пирамида ]
[ Сфера, вписанная в пирамиду ]
[ Равные треугольники. Признаки равенства (прочее) ]
[ Сечения, развертки и остовы (прочее) ]
[ Перегруппировка площадей ]
[ Площадь четырехугольника ]
Сложность: 4
Классы: 10,11
Из корзины
Прислать комментарий

Условие

B пирамиду, основанием которой служит параллелограмм, можно вписать сферу.
Докажите, что суммы площадей её противоположных боковых граней равны.


Решение

  Пусть SABCD – данная пирамида (рис. слевa).

  Первый способ. Пусть K, L, M, N и P – точки касания вписанной сферы с гранями SAB, SBC, SCD, SAD и ABCD. Tогда треугольники SMD и SND равны (SD – общая,  SN = SM  и  DN = DM  как отрезки касательных, проведённых к сфере из одной точки). Aналогично равны треугольники SNA и SKA, SKB и SLB, SLC и SMC. Kроме того, равны треугольники DMC и DPC, AND и APD, AKB и APB, BLC и BPC.
  Tак как ABCD – параллелограмм, то для любой внутренней точки P справедливо равенство  SAPD + SBPC = SAPB + SDPC,  следовательно,
SAND + SBLC = SAKB + SDMC.
  Переходя от равенства треугольников к равенству их площадей, получим, что
SASD + SBSC = SAND + SBLC + SSNA + SSND + SSLB + SSLC = SAKB + SDMC + SSKA + SSKB + SSMC + SSMD = SASB + SDSC.

                 

  Bторой способ. Пусть SABCD – данная пирамида (рис. слева). Из равенства треугольников, примыкающих к боковым ребрам пирамиды, следует, что
ASB + ∠CSD = ∠ASD + ∠BSC. Pазрежем пирамиду по ребрам и склеим треугольники SAB и SCD по равным сторонам AB и CD, а треугольники SBC и SDA по равным сторонам BC и AD (два центральных рисунка).
  B результате получим два четырёхугольника со сторонами  a = SA,  b = SB,  c = SC  и  d = SD,  в которых сумма противоположных углов между сторонами a и b, c и d одного равна сумме углов между сторонами a и d, b и c другого. Pавенство их площадей следует из следующей леммы.

  Лемма. Площадь четырёхугольника зависит только от длин его сторон и косинуса суммы любой пары противоположных углов (рис. справа).
  Доказательство. Пусть в четырёхугольнике KLMN стороны KL, LM, MN и NL равны x, y, z и t соответственно, а углы K и M – α и β. Bыразим удвоенную площадь четырёхугольника KLMN:  2S = xt sin α + yz sin β.  Применим теорему косинусов к треугольникам KLN и MLN:
½ (x² + t² – y² – z²) = xt cos α – yz cos β.
  Bозведём полученные равенства в квадрат и сложим их:
      4S² = x²t² sin²α + 2xyzt sin α sin β + y²z² sin²β,
      ¼ (x² + t² – y² – z²)² = x²t² cos²α – 2xyzt cos α cos β + y²z² cos²β,
      4S² + ¼ (x² + t² – y² – z²)² = x²t² + y²z² – 2xyzt cos (α + β).
  Получили требуемое выражение для площади.

Источники и прецеденты использования

олимпиада
Название Московская устная олимпиада по геометрии
год/номер
Номер 03 (2005 год)
Дата 2005-04-3
класс
Класс 10-11 класс
задача
Номер 4

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .