Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 13 задач
Версия для печати
Убрать все задачи

Через вершины A и B треугольника ABC проведены две прямые, которые разбивают его на четыре фигуры (три треугольника и один четырёхугольник). Известно, что три из этих фигур имеют одинаковую площадь. Докажите, что одна из этих фигур – четырёхугольник.

Вниз   Решение


Автор: Купцов Л.

Два треугольника A1B1C1 и A2B2C2, площади которых равны соответственно S1 и S2, расположены так, что лучи A1B1 и A2B2, B1C1 и B2C2, C1A1 и C2A2 противоположно направлены. Найдите площадь треугольника с вершинами в серединах отрезков A1A2, B1B2, C1C2.

ВверхВниз   Решение


Решите задачу 5.85, а) с помощью теоремы Менелая.

ВверхВниз   Решение


Автор: Купцов Л.

На плоскости расположены три окружности Ω1, Ω2, Ω3 радиусов r1, r2, r3 соответственно – каждая вне двух других, причём  r1 > r2  и   r1 > r3. Из точки пересечения общих внешних касательных к окружностям Ω1 и Ω2 проведены касательные к окружности Ω3, а из точки пересечения общих внешних касательных к окружностям Ω1 и Ω3 проведены касательные к окружности Ω2. Докажите, что последние две пары касательных образуют четырёхугольник, в который можно вписать окружность, и найдите её радиус.

ВверхВниз   Решение


Из Южной Америки в Россию 2010 кораблей везут бананы, лимоны и ананасы. Число бананов на каждом корабле равно числу лимонов на остальных кораблях вместе взятых, а число лимонов на каждом корабле равно числу ананасов на остальных кораблях вместе взятых. Докажите, что общее число фруктов делится на 31.

ВверхВниз   Решение


В шести корзинах лежат груши, сливы и яблоки. Число слив в каждой корзине равно числу яблок в остальных корзинах вместе взятых, а число яблок в каждой корзине равно числу груш в остальных корзинах вместе взятых. Докажите, что общее число фруктов делится на 31.

ВверхВниз   Решение


У Миши есть 1000 одинаковых кубиков, у каждого из которых одна пара противоположных граней белая, вторая – синяя, третья – красная. Он собрал из них большой куб 10×10×10, прикладывая кубики друг к другу одноцветными гранями. Докажите, что у большого куба есть одноцветная грань.

ВверхВниз   Решение


Пусть числа a и b определены равенством  a/b = [a0; a1, a2, ..., an].  Докажите, что уравнение  ax – by = 1  c неизвестными x и y имеет решением одну из пар  (Qn–1, Pn–1)  или  (– Qn–1, – Pn–1),  где  Pn–1/Qn–1  – (n–1)-я подходящая дробь. От чего зависит, какая именно из пар является решением?

ВверхВниз   Решение


На почтовом ящике написано: "Выемка писем производится пять раз в день с 7 до 19 ч". И действительно, первый раз почтальон забирает почту в 7 ч утра, а последний  — в 7 ч вечера. Через какие интервалы времени вынимают письма из ящика?

ВверхВниз   Решение


Изобразите на фазовой плоскости Opq множество точек  (p, q),  для которых уравнение  x³ + px + q = 0  имеет три различных корня, принадлежащих интервалу  (–2, 4).

ВверхВниз   Решение


Дан многочлен  P(x) = a2nx2n + a2n–1x2n–1 + ... + a1x + a0,  у которого каждый коэффициент ai принадлежит отрезку  [100, 101].
При каком минимальном натуральном n у такого многочлена может найтись действительный корень?

ВверхВниз   Решение


Существуют ли такие натуральные числа a, b, c, d, что  a³ + b³ + c³ + d³ = 100100 ?

ВверхВниз   Решение


Окружность S касается окружностей S1 и S2 в точках A1 и A2.
Докажите, что прямая A1A2 проходит через точку пересечения общих внешних или общих внутренних касательных к окружностям S1 и S2.

Вверх   Решение

Задача 56902
Темы:    [ Теоремы Чевы и Менелая ]
[ Касающиеся окружности ]
[ Три прямые, пересекающиеся в одной точке ]
Сложность: 4
Классы: 9,10
Из корзины
Прислать комментарий

Условие

Окружность S касается окружностей S1 и S2 в точках A1 и A2.
Докажите, что прямая A1A2 проходит через точку пересечения общих внешних или общих внутренних касательных к окружностям S1 и S2.


Решение

Пусть O, O1 и O2 – центры окружностей S, S1 и S2; X – точка пересечения прямых O1O2 и A1A2. Применяя теорему Менелая к треугольнику OO1O2 и точкам A1, A2 и X, получаем    а значит,  O1X : O2X = R1 : R2,  где R1 и R2 – радиусы окружностей S1 и S2. Следовательно, X – точка пересечения общих внешних или общих внутренних касательных к окружностям S1 и S2.

Источники и прецеденты использования

книга
Автор Прасолов В.В.
Год издания 2001
Название Задачи по планиметрии
Издательство МЦНМО
Издание 4*
глава
Номер 5
Название Треугольники
параграф
Номер 7
Название Теорема Менелая
Тема Теоремы Чевы и Менелая
задача
Номер 05.060

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .