ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Даны окружность, прямая и точки A, A', B, B', C, C', M,
лежащие на этой прямой. Согласно задачам 30.1
и 30.3 существует единственное проективное преобразование
данной прямой на себя, отображающее точки A, B, C соответственно
в A', B', C'. Обозначим это преобразование через P.
Постройте при помощи одной линейки а) точку P(M);
б) неподвижные точки отображения P (задача Штейнера).
На сторонах AB и CD выпуклого четырехугольника ABCD
взяты точки E и F. Пусть K, L, M и N — середины
отрезков DE, BF, CE и AF. Докажите, что четырехугольник KLMN
выпуклый и его площадь не зависит от выбора точек E и F.
Детали полотна игрушечной железной дороги имеют
форму четверти окружности радиуса R. Докажите, что
последовательно присоединяя их концами
так, чтобы они плавно переходили друг
в друга, нельзя составить путь, у которого
начало совпадает с концом, а первое и последнее звенья образуют
тупик, изображенный на рис.
а) Можно ли замостить костями домино размером 1×2
шахматную доску размером 8×8, из которой вырезаны
два противоположных угловых поля?
Даны две окружности S1, S2 и прямая l. Проведите
прямую l1, параллельную прямой l, так, чтобы:
На стороне AB четырехугольника ABCD взяты точки A1
и B1, а на стороне CD — точки C1 и D1,
причем
AA1 = BB1 = pAB и
CC1 = DD1 = pCD, где p < 0, 5. Докажите,
что
SA1B1C1D1/SABCD = 1 - 2p.
Верхней целой частью числа $x$ называют наименьшее целое число, большее или равное $x$. Существует ли такое число $A$, что для любого натурального $n$ расстояние от верхней целой части $A^n$ до ближайшего квадрата натурального числа всегда равно 2? Два квадрата BCDA и BKMN имеют общую вершину B.
Докажите, что медиана BE треугольника ABK и высота BF
треугольника CBN лежат на одной прямой. (Вершины
обоих квадратов перечислены по часовой стрелке.)
Даны треугольник ABC со сторонами a > b > c и
произвольная точка O внутри его. Пусть прямые
AO, BO, CO пересекают
стороны треугольника в точках P, Q, R. Докажите, что
OP + OQ + OR < a.
|
Задача 57479
УсловиеДаны треугольник ABC со сторонами a > b > c и
произвольная точка O внутри его. Пусть прямые
AO, BO, CO пересекают
стороны треугольника в точках P, Q, R. Докажите, что
OP + OQ + OR < a.
РешениеВозьмем на сторонах
BC, CA, AB точки A1 и A2, B1 и B2, C1 и C2 так, что
B1C2| BC, C1A2| CA, A1B2| AB (рис.). В треугольниках
A1A2O, B1B2O, C1C2O
наибольшими сторонами являются
A1A2, B1O, C2O соответственно.
Поэтому
OP < A1A2, OQ < B1O, OR < C2O, т. е.
OP + OQ + OR < A1A2 + B1O + C2O = A1A2 + CA2 + BA1 = BC.
Источники и прецеденты использования
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке