Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 11 задач
Версия для печати
Убрать все задачи

Собралось n человек. Некоторые из них знакомы между собой, причём каждые два незнакомых имеют ровно двух общих знакомых, а каждые два знакомых не имеют общих знакомых. Доказать, что каждый из присутствующих знаком с одинаковым числом человек.

Вниз   Решение


Докажите, что нетождественное проективное преобразование прямой имеет не более двух неподвижных точек.

ВверхВниз   Решение


Докажите, что касающиеся окружности (окружность и прямая) переходят при инверсии в касающиеся окружности или в окружность и прямую, или в пару параллельных прямых.

ВверхВниз   Решение


Даны середины трех равных сторон выпуклого четырехугольника. Постройте этот четырехугольник.

ВверхВниз   Решение


Назовём натуральное число интересным, если сумма его цифр – простое число.
Какое наибольшее количество интересных чисел может быть среди пяти подряд идущих натуральных чисел?

ВверхВниз   Решение


Дан треугольник ABC. Построены четыре окружности равного радиуса $ \rho$ так, что одна из них касается трех других, а каждая из этих трех касается двух сторон треугольника. Найдите $ \rho$, если радиусы вписанной и описанной окружностей треугольника равны r и R соответственно.

ВверхВниз   Решение


Среди всех таких чисел n, что любой выпуклый 100-угольник можно представить в виде пересечения (т. е. общей части) n треугольников, найдите наименьшее.

ВверхВниз   Решение


а) Из обычной шахматной доски 8 на 8 вырезали клетки с5 и g2. Можно ли то, что осталось, замостить доминошками 1 на 2?
  б) Тот же вопрос, если вырезали клетки с6 и g2.

ВверхВниз   Решение


По двум прямым, пересекающимся в точке P, равномерно с одинаковой скоростью движутся две точки: по одной прямой — точка A, по другой — точка B. Через точку P они проходят не одновременно. Докажите, что в любой момент времени описанная окружность треугольника ABP проходит через некоторую фиксированную точку, отличную от P.

ВверхВниз   Решение


Найти остаток от деления на 7 числа  1010 + 10102 + 10103 + ... + 101010.

ВверхВниз   Решение


На стороне AB треугольника ABC отмечена точка K так, что  AB = CK.  Точки N и M – середины отрезков AK и BC соответственно. Отрезки NM и CK пересекаются в точке P. Докажите, что  KN = KP.

Вверх   Решение

Задача 66135
Темы:    [ Средняя линия треугольника ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Вспомогательные подобные треугольники ]
Сложность: 3+
Классы: 8,9
Из корзины
Прислать комментарий

Условие

На стороне AB треугольника ABC отмечена точка K так, что  AB = CK.  Точки N и M – середины отрезков AK и BC соответственно. Отрезки NM и CK пересекаются в точке P. Докажите, что  KN = KP.


Решение

Пусть L – середина отрезка BK. Тогда ML – средняя линия треугольника BCK, то есть  ML || CK  и  ML = ½ CK = ½ AB = LN.  Следовательно, треугольник MLN равнобедренный. Из параллельности прямых ML и PK следует, что треугольник PKN подобен треугольнику MLN, значит, и он равнобедренный.

Замечания

Можно также отложить на продолжении стороны AB за точку A отрезок  AQ = BK  и использовать равнобедренный треугольник QKC и то, что MN – средняя линия треугольника QCB.

Источники и прецеденты использования

олимпиада
Название Московская устная олимпиада по геометрии
год/номер
Дата 2017-04-16
класс
Класс 8-9
задача
Номер 1

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .