Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 15 задач
Версия для печати
Убрать все задачи

Автор: Ионин Ю.И.

Квадратный трёхчлен  f(x) = ax² + bx + c  таков, что уравнение  f(x) = x  не имеет вещественных корней.
Докажите, что уравнение  f(f(x)) = x  также не имеет вещественных корней.

Вниз   Решение


Пусть характеристическое уравнение ( 11.3) последовательности {an} имеет два различных корня x1 и x2. Докажите, что при фиксированных a0, a1 существует ровно одна пара чисел c1, c2 такая, что

an = c1x1n + c2x2n        (n = 0, 1, 2,...).


ВверхВниз   Решение


Дан выпуклый многоугольник и точка O внутри него. Любая прямая, проходящая через точку O, делит площадь многоугольника пополам. Доказать, что многоугольник центрально-симметричный и O — центр симметрии.

ВверхВниз   Решение


Из последовательности  a,  a + d,  a + 2d,  a + 3d, ...,  являющейся бесконечной арифметической прогрессией, где d не равно 0, тогда и только тогда можно выбрать подпоследовательность, являющуюся бесконечной геометрической прогрессией, когда отношение a/d  рационально. Докажите это.

ВверхВниз   Решение


На суде в качестве вещественного доказательства предъявлено 14 монет. Эксперт обнаружил, что семь из них — фальшивые, остальные — настоящие, причём узнал, какие именно фальшивые, а какие — настоящие. Суд же знает только, что фальшивые монеты весят одинаково, настоящие монеты весят одинаково, а фальшивые легче настоящих. Эксперт хочет тремя взвешиваниями на чашечных весах без гирь доказать суду, что все обнаруженные им фальшивые монеты действительно фальшивые, а остальные — настоящие. Сможет ли он это сделать?

ВверхВниз   Решение


а) Имеется 51 двузначное число. Докажите, что из этих чисел можно выбрать по крайней мере 6 чисел так, чтобы никакие два из выбранных чисел ни в одном разряде не имели одинаковой цифры.

б) Даны натуральные числа k и n, причём  1 < k < n.  Для какого наименьшего m верно следующее утверждение: при любой расстановке m ладей на доске размером n×n клеток можно выбрать k ладей из этих m так, чтобы никакие две из этих выбранных ладей не били друг друга?

ВверхВниз   Решение


а) К любому конечному множеству точек плоскости, обладающему тем свойством, что любые три точки из этого множества являются вершинами невырожденного тупоугольного треугольника, всегда можно добавить ещё одну точку так, что это свойство сохранится. Докажите это.

б) Справедливо ли аналогичное утверждение для бесконечного множества точек плоскости?

ВверхВниз   Решение


Даны два треугольника A1A2A3 и B1B2B3. "Опишите" вокруг треугольника A1A2A3 треугольник M1M2M3 наибольшей площади, подобный треугольнику B1B2B3 (вершина A1 должна лежать на прямой M2M3, вершина A2 – на прямой A1A3, вершина A3 – на прямой A1A2).

ВверхВниз   Решение


Автор: Блох А.

На бумагу поставили кляксу. Для каждой точки кляксы определили наименьшее и наибольшее расстояние до границы кляксы. Среди всех наименьших расстояний выбрали наибольшее, а среди наибольших выбрали наименьшее и сравнили полученные два числа. Какую форму имеет клякса, если эти два числа равны между собой?

ВверхВниз   Решение


Найдите формулу n-го члена для последовательностей, заданных условиями ( n $ \geqslant$ 0):

a) a0 = 0, a1 = 1, an + 2 = 5an + 1 - 6an;
б) a0 = 1, a1 = 1, an + 2 = 3an + 1 - 2an;
в) a0 = 1, a1 = 1, an + 2 = an + 1 + an;
г) a0 = 1, a1 = 2, an + 2 = 2an + 1 - an;
д) a0 = 0, a1 = 1, an + 2 = 2an + 1 + an.

ВверхВниз   Решение


Точка K – середина стороны AB квадрата ABCD, а точка L делит диагональ AC в отношении  AL : LC = 3 : 1.  Докажите, что угол KLD прямой.

ВверхВниз   Решение


Автор: Ионин Ю.И.

В трёх вершинах квадрата находятся три кузнечика. Они играют в чехарду, то есть прыгают друг через друга. При этом, если кузнечик A прыгает через кузнечика B, то после прыжка он оказывается от B на том же расстоянии, что и до прыжка, и, естественно, на той же прямой. Может ли один из них попасть в четвёртую вершину квадрата?

ВверхВниз   Решение


На прямой l даны точки A, B, C и D. Через точки A и B, а также через точки C и D проводятся параллельные прямые.
Докажите, что диагонали полученных таким образом параллелограммов (или их продолжения) пересекают прямую l в двух фиксированных точках.

ВверхВниз   Решение


Диагонали трапеции взаимно перпендикулярны. Докажите, что произведение длин оснований трапеции равно сумме произведений длин отрезков одной диагонали и длин отрезков другой диагонали, на которые они делятся точкой пересечения.

ВверхВниз   Решение


Автор: Белкин А.

В центре квадрата находится полицейский, а в одной из его вершин – гангстер. Полицейский может бегать по всему квадрату, а гангстер – только по его сторонам. Известно, что отношение максимальной скорости полицейского и максимальной скорости гангстера равно:   а) 0,5;   б) 0,49;   в) 0,34;   г) ⅓.   Сможет ли полицейский может бежать так, что в какой-то момент окажется на одной стороне с гангстером?

Вверх   Решение

Задача 79256
Темы:    [ Теория игр (прочее) ]
[ Подобные фигуры ]
Сложность: 5
Классы: 9,10,11
Из корзины
Прислать комментарий

Условие

Автор: Белкин А.

В центре квадрата находится полицейский, а в одной из его вершин – гангстер. Полицейский может бегать по всему квадрату, а гангстер – только по его сторонам. Известно, что отношение максимальной скорости полицейского и максимальной скорости гангстера равно:   а) 0,5;   б) 0,49;   в) 0,34;   г) ⅓.   Сможет ли полицейский может бежать так, что в какой-то момент окажется на одной стороне с гангстером?


Решение

  Пусть u и v – максимальные скорости полицейского и гангстера. Введём систему координат с началом в центре исходного квадрата ABCD и осями, параллельными его сторонам. Положим сторону квадрата ABCD равной 6 м и будем считать, что максимальная скорость гангстера  v = 3 (м/мин)  (нам ведь важно лишь отношение  u : v).  Точки, в которых находятся полицейский и гангстер, обозначим через  П(хП, yП)  и  Г(xГ, yГ),  соответственно. Обозначим через Г' точку с координатами  (⅓ xГ, ⅓ yГ);  если точка Г движется по контуру квадрата ABCD со скоростью 3, то Г' движется по контуру квадрата со стороной 2 со скоростью 1.

  а-в) Докажем, что полицейский достигнет своей цели (то есть окажется с гангстером на одной стороне квадрата; будем говорить, что в этом случае он ловит гангстера). Полицейский будет ловить гангстера в несколько этапов.

  Первый этап. Полицейский догоняет Г'. Это всегда можно сделать, так как  u > 1.  Первый этап заканчивается, когда точки П и Г' совпадают.
  Второй этап. Можно считать без ограничения общности, что к концу первого этапа точка Г окажется на стороне ; тогда  3xП = xГ.  На протяжении всего второго этапа полицейский должен двигаться таким образом, чтобы всё время выполнялось равенство  3xП = xГ;  для этого необходимо и достаточно, чтобы то же соотношение все время имело место для горизонтальных составляющих скоростей полицейского и гангстера. При этом по вертикали полицейский может двигаться к стороне AB со скоростью     Возможны два случая.
  1) Г остаётся все время на AB. Тогда П через некоторое время достигнет AB, и гангстер будет пойман.

  2) В какой-то момент Г уйдёт со стороны AB. Как только Г достигнет границы AB (будем считать, точки B) начинается
  Третий этап. К началу этого этапа точки Г и B совпадают, а точка П находится от каждой из сторон AB и BC на расстоянии, не большем 2. На третьем этапе полицейский должен с максимальной скоростью приближаться по перпендикуляру к той стороне, на которой находится гангстер (если  Г находится в B,  то безразлично, к какой именно, – к стороне AB или же к стороне BC). Чтобы добежать из точки B до точки A или до точки С, гангстеру понадобится 2 минуты, а полицейскому, чтобы достигнуть соответствующей стороны (AB или ), понадобится меньше 2 минут. Следовательно, полицейский поймает гангстера на одной из сторон AB или BC.

  г) Покажем, что при  u = 1 м/мин   гангстер может выбрать такую стратегию, при которой полицейский не сумеет его догнать. Проведём прямые A'B', C'D', параллельные стороне AB, и прямые A"D", B"C", параллельные BC, так, чтобы  AA' = BB' = CC' = DD' = AA" = BB" = CC" = DD" = 1  (рис. слева). Пусть в самом начале гангстер Г находится в середине стороны AB, а полицейский П – над прямой A'B'. Проведём между П и A'B' вспомогательную прямую A1B1, параллельную AB (рис. справа).

  Опишем теперь стратегию гангстера. Пока полицейский находится выше прямой A1B1, гангстер остаётся на месте – в середине AB. Рано или поздно полицейский достигнет A1B1 (иначе он никогда не поймает гангстера).
  Пусть при этом  xП ≤ 0  (случай  xП ≥ 0  симметричен). Тогда Г перебегает в середину отрезка BC. На это ему требуется 2 минуты. За первую минуту (пока ганстер находится на AB) полицейский не успеет добежать до прямой AB и, значит, не сможет поймать Г на стороне AB. Кроме того, за 2 минуты он не успеет добежать до прямой B"C".
  Итак, мы пришли к конфигурации, эквивалентной начальной: Г – в середине стороны BC, а П – левее прямой B"C". При этом прошло более 2 минут.
  Дальнейшее поведение Г аналогично описанному выше. Очевидно, что при такой стратегии гангстера полицейский не поймает его ни за какое конечное время.

Замечания

1. В условии задачи, приведённом в книге Г. Гальперина и А. Толпыго "Московские математические олимпиады", ошибочно утверждается, что и в г) полицейский может поймать гангстера.

2. В Задачнике "Кванта" предлагается также доказать, что при  3u < v  гангстер может "убежать" от полицейского. Это, очевидно, следует из г).

Источники и прецеденты использования

журнал
Название "Квант"
год
Год 1973
выпуск
Номер 10
Задача
Номер М229
олимпиада
Название Московская математическая олимпиада
год
Номер 36
Год 1973
вариант
Класс 8
Тур 2
задача
Номер 3

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .