Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 12 задач
Версия для печати
Убрать все задачи

Существует ли треугольник со сторонами a = 7 и b = 2, если известно, что высота, опущенная на третью сторону этого треугольника, является средним геометрическим двух других высот?

Вниз   Решение


Докажите, что если среди полученных фигур есть p-звенная и q-звенная, то p + q$ \le$n + 4.

ВверхВниз   Решение


К натуральному числу  a > 1  приписали это же число и получили число b, кратное a². Найдите все возможные значения числа  b/a².

ВверхВниз   Решение


Петя записал несколько алгебраических выражений, возвёл каждое из них в квадрат и сложил результаты.
Могло ли у него в итоге получиться выражение  x² + y² + z² + 3y + 4x + xz + 1?

ВверхВниз   Решение


Гриша записал на доске 100 чисел. Затем он увеличил каждое число на 1 и заметил, что произведение всех 100 чисел не изменилось. Он опять увеличил каждое число на 1, и снова произведение всех чисел не изменилось, и так далее. Всего Гриша повторил эту процедуру k раз, и все k раз произведение чисел не менялось. Найдите наибольшее возможное значение k.

ВверхВниз   Решение


Найдите натуральное число вида  n = 2x3y5z,  зная, что половина его имеет на 30 делителей меньше, треть – на 35 и пятая часть – на 42 делителя меньше, чем само число.

ВверхВниз   Решение


Продолжения сторон AB и CD выпуклого четырёхугольника ABCD пересекаются в точке K. Известно, что  AD = BC.  Пусть M и N – середины сторон AB и CD. Докажите, что треугольник MNK тупоугольный.

ВверхВниз   Решение


Даны две точки A и B. Две окружности касаются прямой AB (одна — в точке A, другая — в точке B) и касаются друг друга в точке M. Найдите ГМТ M.

ВверхВниз   Решение


  а) Прямоугольная таблица из m строк и n столбцов заполнена числами. Переставим числа в каждой строке в порядке возрастания. Если после этого переставить числа в каждом столбце в порядке возрастания, то в каждой строке они по-прежнему будут стоять в порядке возрастания. Докажите это.
  б) Что будет, если действовать в другом порядке: в первоначальной таблице сначала переставить числа по возрастанию в столбцах, а потом – в строках: получится ли в результате та же самая таблица, что и в первом случае, или другая?

ВверхВниз   Решение


Окружность, вписанная в треугольник, точкой касания делит одну из сторон на отрезки, равные 3 и 4, а противолежащий этой стороне угол равен 120o . Найдите площадь треугольника.

ВверхВниз   Решение


Даны непересекающиеся хорды AB и CD окружности. Постройте точку X окружности так, чтобы хорды AX и BX высекали на хорде CD отрезок EF, имеющий данную длину a.

ВверхВниз   Решение


Основание пирамиды – треугольник со сторонами 10, 13, 13. Площади боковых граней соответственно равны 150, 195, 195. Найдите высоту пирамиды.

Вверх   Решение

Задача 87085
Темы:    [ Двугранный угол ]
[ Теорема о трех перпендикулярах ]
Сложность: 4
Классы: 8,9
Из корзины
Прислать комментарий

Условие

Основание пирамиды – треугольник со сторонами 10, 13, 13. Площади боковых граней соответственно равны 150, 195, 195. Найдите высоту пирамиды.

Решение

Пусть ABCD – треугольная пирамида с вершиной D , причём

AB = AC = 13, BC = 10, SΔ ADB = SΔ ADC = 195, SΔ BDC = 150.

Если DK , DL и DM – высоты треугольников ADB , ADC и BDC соответственно, то
DL = DK = = = 30,


DM = = = 30.

Пусть O – основание высоты пирамиды ABCD , проведённой из вершины D . По теореме о трёх перпендикулярах OK AB , OL AC и OM BC . Из равенства наклонных DK , DL и DM следует равенство их ортогональных проекций OK , OL и OM . Значит, точка O равноудалена от прямых AB , AC и BC . Следовательно, O – либо центр вписанной окружности (рис.1), либо центр одной из вневписанных окружностей треугольника ABC (рис.2). Пусть r – радиус вписанной окружности треугольника ABC , а rc , rb и ra – радиусы вневписанных окружностей, касающихся сторон AB , AC и BC соответственно, p – полупериметр треугольника ABC . Тогда
SΔ ABC = BC· AM = BC· = · 10· 12 = 60,


r = = = ,


rc = rb = = = 12,


ra = = = .

Из прямоугольного треугльника DMO находим, что в первом случае
DO = = = = ,

во втором и третьем –
DO = = = = 6,

в четвёртом –
DO = = = = .


Ответ

; 6 ; 6 ; .

Источники и прецеденты использования

web-сайт
Название Система задач по геометрии Р.К.Гордина
URL http://zadachi.mccme.ru
неизвестно
Номер 7404

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .