ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Дана окружность S и точка O внутри ее. Рассмотрим все проективные
преобразования, которые S отображают в окружность, а O — в ее
центр. Докажите, что все такие преобразования отображают на
бесконечность одну и ту же прямую.
Дан треугольник ABC. На его сторонах AB и BC
построены внешним образом квадраты ABMN и BCPQ.
Докажите, что центры этих квадратов и середины отрезков
MQ и AC образуют квадрат.
Дан выпуклый четырехугольник ABCD. Пусть P, Q —
точки пересечения продолжений противоположных сторон
AB и CD, AD и BC соответственно, R — произвольная
точка внутри четырехугольника. Пусть K — точка пересечения
прямых BC и PR, L — точка пересечения прямых AB и QR,
M — точка пересечения прямых AK и DR. Докажите, что
точки L, M и C лежат на одной прямой.
Точка внутри правильного 2n-угольника соединена с вершинами. Возникшие 2n треугольников раскрашены попеременно в голубой и красный цвет. Докажите, что сумма площадей голубых треугольников равна сумме площадей красных Параллелограмм описан около эллипса. Докажите, что диагонали параллелограмма содержат сопряженные диаметры эллипса. Пусть O — центр вписанной окружности
треугольника ABC, причем
OA Даны два треугольника ABC и A1B1C1. Известно,
что прямые AA1, BB1 и CC1 пересекаются в одной точке O,
и прямые AB1, BC1 и CA1 пересекаются в одной точке O1.
Докажите, что прямые AC1, BA1 и CB1 тоже пересекаются
в одной точке O2 (теорема о дважды перспективных треугольниках).
Докажите, что
S = crarb/(ra + rb).
Докажите, что
На сторонах AB и AC треугольника ABC внешним
образом построены правильные треугольники ABC' и AB'C.
Точка M делит сторону BC в отношении BM : MC = 3 : 1;
K и L — середины сторон AC' и B'C. Докажите, что углы
треугольника KLM равны
30o,
60o и
90o.
В клетках доски n×n произвольно расставлены числа от 1 до n². Докажите, что найдутся две такие соседние клетки (имеющие общую вершину или общую сторону), что стоящие в них числа отличаются не меньше чем на n + 1. |
Задача 98071
УсловиеВ клетках доски n×n произвольно расставлены числа от 1 до n². Докажите, что найдутся две такие соседние клетки (имеющие общую вершину или общую сторону), что стоящие в них числа отличаются не меньше чем на n + 1. РешениеДопустим, что для каждых двух соседних клеток записанные в них числа отличаются не более чем на n. Рассмотрим клетки, в которых стоят числа 1 и n². Шахматный король может попасть их первой клетки во вторую, сделав не более n – 1 хода, поэтому разность n² – 1 не больше чем n(n – 1). Противоречие. Замечания4 балла Источники и прецеденты использования |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке