Страница: 1
2 3 4 5 >> [Всего задач: 25]
Задача
65002
(#1)
|
|
Сложность: 3 Классы: 8,9
|
Существует ли треугольник, в котором одна сторона равна какой-то из его высот, другая – какой-то из биссектрис, а третья – какой-то из медиан?
Задача
65003
(#2)
|
|
Сложность: 3+ Классы: 8,9
|
В прямоугольном треугольнике ABC (∠C = 90°) биссектрисы AA1 и BB1 пересекаются в точке I. Пусть O – центр описанной окружности треугольника CA1B1. Докажите, что OI ⊥ AB.
Задача
65004
(#3)
|
|
Сложность: 3+ Классы: 8,9
|
Точки A', B', C' лежат на сторонах BC, CA, AB треугольника ABC. Точка X такова, что ∠AXB = ∠A'C'B' + ∠ACB и ∠BXC = ∠B'A'C' + ∠BAC.
Докажите, что четырёхугольник XA'BC' – вписанный.
Задача
65005
(#4)
|
|
Сложность: 3+ Классы: 8,9
|
Диагонали вписанного четырёхугольника ABCD пересекаются в точке N. Описанные окружности треугольников ANB и CND повторно пересекают стороны BC и AD в точках A1, B1, C1, D1. Докажите, что четырёхугольник A1B1C1D1 вписан в окружность с центром N.
Задача
65006
(#5)
|
|
Сложность: 3+ Классы: 8,9,10
|
На высоте BD треугольника ABC взята такая точка E, что ∠AEC = 90°. Точки O1 и O2 – центры описанных окружностей треугольников AEB и CEB; F, L – середины отрезков AC и O1O2. Докажите, что точки L, E, F лежат на одной прямой.
Страница: 1
2 3 4 5 >> [Всего задач: 25]