Страница: 1
2 3 4 5 6 7 >> [Всего задач: 41]
|
|
Сложность: 3 Классы: 7,8,9
|
Верно ли, что любое натуральное число можно умножить на одно из чисел 1, 2, 3, 4 или 5 так, чтобы результат начинался на цифру 1?
|
|
Сложность: 3 Классы: 10,11
|
Геометрическая прогрессия состоит из 37 натуральных чисел. Первый и последний члены прогрессии взаимно просты.
Докажите, что 19-й член прогрессии является 18-й степенью натурального числа.
|
|
Сложность: 3 Классы: 7,8,9
|
По кругу стоят мальчики и девочки (есть и те, и другие), всего 20 детей. Известно, что у каждого мальчика сосед по часовой стрелке – ребёнок в синей футболке, а у каждой девочки сосед против часовой стрелки – ребёнок в красной футболке. Можно ли однозначно установить, сколько в круге мальчиков?
|
|
Сложность: 3 Классы: 7,8,9,10
|
Существуют ли 2016 целых чисел, сумма и произведение которых равны 2016?
|
|
Сложность: 3 Классы: 7,8,9
|
На длинной ленте бумаги выписали все числа от 1 до 1000000 включительно (в некотором произвольном порядке). Затем ленту разрезали на кусочки по две цифры в каждом кусочке. Докажите, что в каком бы порядке ни выписывались числа, на кусочках встретятся все двузначные числа.
Страница: 1
2 3 4 5 6 7 >> [Всего задач: 41]