Страница:
<< 3 4 5 6 7
8 9 >> [Всего задач: 41]
|
|
Сложность: 4 Классы: 8,9,10
|
В треугольнике ABC медианы AA0, BB0, CC0 пересекаются в точке M.
Докажите, что центры описанных окружностей треугольников MA0B0, MCB0, MA0C0, MBC0 и точка M лежат на одной окружности.
|
|
Сложность: 4 Классы: 8,9,10
|
В остроугольном треугольнике ABC угол C равен 60°. H – точка пересечения высот этого треугольника. Окружность с центром H и радиусом HC второй раз пересекает прямые CA и CB в точках M и N соответственно. Докажите, что AN и BM параллельны (или совпадают).
|
|
Сложность: 4 Классы: 9,10,11
|
Пусть p – простое число, большее 10k. Взяли число, кратное p, и вставили между какими-то двумя его соседними цифрами k-значное число A. Получили число, кратное p. В него вставили k-значное число B – между двумя соседними цифрами числа A, – и результат снова оказался кратным p. Докажите, что число B получается из числа A перестановкой цифр.
|
|
Сложность: 4 Классы: 8,9,10
|
а) Есть 2n + 1 батарейка (n > 2). Известно, что хороших среди них на одну больше, чем плохих, но какие именно батарейки хорошие, а какие плохие, неизвестно. В фонарик вставляются две батарейки, при этом он светит, только если обе – хорошие. За какое наименьшее число таких попыток можно гарантированно добиться, чтобы фонарик светил?
б) Та же задача, но батареек 2n (n > 2), причём хороших и плохих поровну.
|
|
Сложность: 4 Классы: 9,10,11
|
В стране 64 города, некоторые пары из них соединены дорогой, но нам неизвестно, какие именно. Мы можем выбрать любую пару городов и получить ответ на вопрос “есть ли дорога между ними?”. Мы хотим узнать, можно ли в этой стране добраться от любого города до любого другого, двигаясь по дорогам. Докажите, что не существует алгоритма, позволяющего сделать это менее чем за 2016 вопросов.
Страница:
<< 3 4 5 6 7
8 9 >> [Всего задач: 41]