ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Найдите множество середин хорд, проходящих через заданную точку A внутри окружности. Концы отрезков AB и CD перемещаются по сторонам данного угла, причем прямые AB и CD перемещаются параллельно; M – точка пересечения отрезков AB и CD. Докажите, что величина
Гипотенуза прямоугольного треугольника равна a, один из острых
углов равен α. В треугольнике ABC угол A больше угла B. Докажите, что длина стороны BC больше половины длины стороны AB.
В треугольной пирамиде SABC высота SO проходит через точку O –
центр круга, вписанного в основание ABC пирамиды. Известно, что
Докажите, что отрезок, соединяющий вершину равнобедренного треугольника с точкой, лежащей на основании, не больше боковой стороны треугольника.
Докажите, что в треугольнике угол A острый тогда и
только тогда, когда ma > a/2.
Можно ли разрезать квадрат на четыре части так, чтобы каждая часть соприкасалась (т.е. имела общие участки границы) с тремя другими? Можно ли в прямоугольной таблице 5×10 так расставить числа, чтобы сумма чисел каждой строки равнялась бы 30, а сумма чисел каждого столбца равнялась бы 10? Докажите, что число 100! не является полным квадратом. В круге отметили точку. Можно ли так разрезать этот круг на три части, чтобы из них можно было бы сложить новый круг, у которого отмеченная точка стояла бы в центре? Объясните, как покрасить часть точек плоскости так, чтобы на каждой окружности радиуса 1 см было ровно четыре покрашенные точки. Делится ли на 1999 сумма чисел 1 + 2 + 3 +...+ 1999? Две окружности пересекаются в точках A и B; AM и AN – диаметры окружностей. Докажите, что точки M, N и B лежат на одной прямой. На доске записаны два числа a и b (a > b). Их стирают и заменяют числами a+b/2 и a–b/2. С вновь записанными числами поступают аналогичным образом. Верно ли, что после нескольких стираний разность между записанными на доске числами станет меньше 1/2002? Даны окружность S, точка A на ней и прямая l.
Постройте окружность, касающуюся данной окружности в точке A и данной
прямой.
Может ли n! оканчиваться ровно на пять нулей? Вокруг окружности описан пятиугольник, длины сторон которого – целые числа, а первая и третья стороны равны 1. Радиусы двух пересекающихся окружностей равны 13 и 15, а общая хорда равна 24. Найдите расстояние между центрами. На плоскости даны три точки. Построить три окружности, касающиеся друг друга в этих точках. Разобрать все случаи. На плоскости нарисовано пять различных окружностей. Известно, что каждые четыре из них имеют общую точку. Три купчихи – Сосипатра Титовна, Олимпиада Карповна и Поликсена Уваровна – сели пить чай. Олимпиада Карповна и Сосипатра Титовна выпили вдвоём 11 чашек, Поликсена Уваровна и Олимпиада Карповна – 15, а Сосипатра Титовна и Поликсена Уваровна – 14. Сколько чашек чая выпили все три купчихи вместе? Дано число 1·2·3·4·5·...·56·57. Будем называть флажком пятиугольник, вершины которого — вершины некоторого квадрата и его центр. Разрежьте фигуру ниже справа на флажки (не обязательно одинаковые). Докажите, что
В треугольнике ABC угол A больше угла B. Докажите, что длина стороны BC больше половины длины стороны AB. Даны окружность O, прямая a, пересекающая её, и точка M. Через точку M провести секущую b так, чтобы её часть, заключённая внутри окружности O, делилась пополам в точке её пересечения с прямой a. Вершины многоугольника (не обязательно выпуклого) расположены в узлах
целочисленной решетки. Внутри его лежит n узлов решетки, а на
границе m узлов. Докажите, что его площадь равна n + m/2 - 1 (формула
Пика).
Докажите, что квадрат со стороной n не может накрыть более (n + 1)2 точек
целочисленной решётки.
Вершины треугольника ABC расположены в узлах
целочисленной решетки, причем на его сторонах других
узлов нет, а внутри его есть ровно один узел O. Докажите,
что O — точка пересечения медиан треугольника ABC.
а) В конструкции на рисунке переложите две спички так, чтобы получилось пять равных квадратов.
|
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 158]
Сколькими способами можно расставить чёрную и белую ладьи на шахматной доске так, чтобы они не били друг друга?
Сколькими способами можно поставить на шахматную доску белого и чёрного королей так, чтобы получилась допустимая правилами игры позиция?
На бесконечной шахматной доске на двух соседних по диагонали чёрных полях стоят две чёрные шашки. Можно ли дополнительно поставить на эту доску некоторое число чёрных шашек и одну белую таким образом, чтобы белая одним ходом взяла все чёрные шашки, включая две первоначально стоявшие?
Для игры в "Морской бой" на поле 8×8 клеток расставили 12 "двухпалубных" кораблей. Обязательно ли останется место для "трёхпалубного" корабля? ("Двухпалубный" корабль – прямоугольник 1×2, а "трёхпалубный" – 1×3. Корабли могут соприкасаться, но накладываться друг на друга не должны.)
Шахматный король обошёл всю доску 8×8, побывав на каждой клетке по одному
разу, вернувшись последним ходом в исходную клетку.
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 158]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке