ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 55 56 57 58 59 60 61 >> [Всего задач: 492]      



Задача 109952

Темы:   [ Десятичная система счисления ]
[ Делимость чисел. Общие свойства ]
[ Задачи с ограничениями ]
[ Признаки делимости (прочее) ]
Сложность: 4
Классы: 8,9

Назовем десятизначное число интересным, если оно делится на 11111 и все его цифры различны.
Сколько существует интересных чисел?

Прислать комментарий     Решение

Задача 110156

Темы:   [ Десятичная система счисления ]
[ Перебор случаев ]
Сложность: 4
Классы: 8,9,10

Набор пятизначных чисел {N1 , Nk} таков, что любое пятизначное число, все цифры которого идут в неубывающем порядке, совпадает хотя бы в одном разряде хотя бы с одним их чисел N1 , Nk . Найдите наименьшее возможное значение k .
Прислать комментарий     Решение


Задача 116422

Темы:   [ Десятичная система счисления ]
[ Процессы и операции ]
[ Полуинварианты ]
Сложность: 4
Классы: 10,11

Дано натуральное число. Разрешается расставить между цифрами числа плюсы произвольным образом и вычислить сумму (например, из числа 123456789 можно получить  12345 + 6 + 789 = 13140).  С полученным числом снова разрешается выполнить подобную операцию, и так далее. Докажите, что из любого числа можно получить однозначное, выполнив не более 10 таких операций.

Прислать комментарий     Решение

Задача 30627

Темы:   [ Десятичная система счисления ]
[ Признаки делимости на 3 и 9 ]
Сложность: 4+
Классы: 8,9

Пусть A – сумма цифр числа 44444444, а B – сумма цифр числа A. Найдите сумму цифр числа B.

Прислать комментарий     Решение

Задача 30646

Тема:   [ Десятичная система счисления ]
Сложность: 4+
Классы: 8,9

К числу справа приписывают тройки. Докажите, что когда-нибудь получится составное число.

Прислать комментарий     Решение


Страница: << 55 56 57 58 59 60 61 >> [Всего задач: 492]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .