ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 229]      



Задача 57685

Темы:   [ Векторы сторон многоугольников ]
[ Ромбы. Признаки и свойства ]
Сложность: 3+
Классы: 8,9,10

Сумма четырех единичных векторов равна нулю. Докажите, что их можно разбить на две пары противоположных векторов.
Прислать комментарий     Решение


Задача 57702

Тема:   [ Неравенства с векторами ]
Сложность: 3+
Классы: 9

Докажите, что из пяти векторов всегда можно выбрать два так, чтобы длина их суммы не превосходила длины суммы оставшихся трех векторов.
Прислать комментарий     Решение


Задача 57730

Тема:   [ Псевдоскалярное произведение ]
Сложность: 3+
Классы: 8,9

Докажите, что:
а) ($ \lambda$a) $ \vee$ b = $ \lambda$(a $ \vee$ b);
б) a $ \vee$ (b + c) = a $ \vee$ b + a $ \vee$ c.
Прислать комментарий     Решение


Задача 57731

Тема:   [ Псевдоскалярное произведение ]
Сложность: 3+
Классы: 8,9

Пусть a = (a1, a2) и  b = (b1, b2). Докажите, что a $ \vee$ b = a1b2 - a2b1.
Прислать комментарий     Решение


Задача 57732

Тема:   [ Псевдоскалярное произведение ]
Сложность: 3+
Классы: 8,9

а) Докажите, что S(A, B, C) = - S(B, A, C) = S(B, C, A).
б) Докажите, что для любых точек A, B, C и D справедливо равенство S(A, B, C) = S(D, A, B) + S(D, B, C) + S(D, C, A).
Прислать комментарий     Решение


Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 229]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .