ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Шаповалов А.В.

Александр Васильевич Шаповалов (род. 1955 г.) - автор книг "Принцип узких мест", "Турнир городов: мир математики в задачах" и других популярных книг по математике. Ответственный редактор серии "Школьные математические кружки". Ведущий преподаватель Кировской ЛМШ и Московских сборов. Член методической комиссии Турнира городов, турнира им. Савина, московского Математического праздника и других соревнований. См. сайт www.ashap.info.

Фильтр
Сложность с по   Класс с по  
Все задачи автора

Страница: << 49 50 51 52 53 54 55 >> [Всего задач: 323]      



Задача 98457

Темы:   [ Шахматные доски и шахматные фигуры ]
[ Шахматная раскраска ]
[ Четность и нечетность ]
[ Разбиения на пары и группы; биекции ]
[ Теория алгоритмов ]
[ Доказательство от противного ]
Сложность: 4
Классы: 8,9

а) На каждом из полей верхней и нижней горизонтали шахматной доски 8×8 стоит по фишке: внизу – белые, вверху – чёрные. За один ход разрешается передвинуть любую фишку на соседнюю свободную клетку по вертикали или горизонтали. За какое наименьшее число ходов можно добиться того, чтобы все чёрные фишки стояли внизу, а белые – вверху?

б) Тот же вопрос для доски 7×7.

Прислать комментарий     Решение

Задача 98458

Темы:   [ Последовательности (прочее) ]
[ Процессы и операции ]
[ Десятичная система счисления ]
[ Доказательство от противного ]
Сложность: 4
Классы: 8,9

Неутомимые Фома и Ерёма строят последовательность. Сначала в последовательности одно натуральное число. Затем они по очереди выписывают следующие числа: Фома получает очередное число, прибавляя к предыдущему любую из его цифр, а Ерёма – вычитая из предыдущего любую из его цифр. Докажите, что какое-то число в этой последовательности повторится не меньше 100 раз.

Прислать комментарий     Решение

Задача 98464

Темы:   [ Взвешивания ]
[ Упорядочивание по возрастанию (убыванию) ]
[ Уравнения в целых числах ]
[ Перебор случаев ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4
Классы: 10,11

а) 100 гирек веса 1, 2, ..., 100 г разложили на две чаши весов так, что есть равновесие.
Докажите, что можно убрать по две гирьки с каждой чаши так, что равновесие не нарушится.

б) Рассмотрим такие n, что набор гирь 1, 2, ... , n г можно разделить на две части, равные по весу.
Верно ли, что для любого такого n, большего 3, можно убрать по две гирьки из каждой части так, что равенство весов сохранится?

Прислать комментарий     Решение

Задача 98465

Темы:   [ Шахматные доски и шахматные фигуры ]
[ Геометрия на клетчатой бумаге ]
[ Связность и разложение на связные компоненты ]
[ Принцип Дирихле (конечное число точек, прямых и т. д.) ]
[ Четность и нечетность ]
Сложность: 4
Классы: 10,11

На большой шахматной доске отметили 2n клеток так, что ладья может ходить по всем отмеченным клеткам, не перепрыгивая через неотмеченные.
Докажите, что фигуру из отмеченных клеток можно разрезать на n прямоугольников.

Прислать комментарий     Решение

Задача 98478

Темы:   [ Теория игр (прочее) ]
[ Оценка + пример ]
Сложность: 4
Классы: 8,9

Разбойники Хапок и Глазок делят кучу из 100 монет. Хапок захватывает из кучи пригоршню монет, а Глазок, глядя на пригоршню, решает, кому из двоих она достается. Так продолжается, пока кто-то из них не получит девять пригоршней, после чего другой забирает все оставшиеся монеты (дележ может закончиться и тем, что монеты будут разделены прежде, чем кто-то получит девять пригоршней). Хапок может захватить в пригоршню сколько угодно монет. Какое наибольшее число монет он может гарантировать себе независимо от действий Глазка?

Прислать комментарий     Решение

Страница: << 49 50 51 52 53 54 55 >> [Всего задач: 323]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .