ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]() Алексей Александрович Заславский (род.1960 г.) - к.т.н. (1990), старший научный сотрудник ЦЭМИ РАН, председатель жюри олимпиады им. Шарыгина, редактор Journal of Classical Geometry, член редколлегии "Кванта". |
|||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Правильный 1997-угольник разбит непересекающимися диагоналями на треугольники. Докажите, что среди них ровно один – остроугольный. Найдите геометрическое место вершин треугольников с заданными ортоцентром и центром описанной окружности. В клетчатом квадрате 10×10 отмечены центры всех единичных квадратиков (всего 100 точек). Какое наименьшее число прямых, не параллельных сторонам квадрата, нужно провести, чтобы вычеркнуть все отмеченные точки? Bосстановите остроугольный треугольник по ортоцентру и серединам двух сторон. Дан вписанный четырёхугольник ABCD. Точки P и Q
симметричны точке C относительно прямых AB и AD
соответственно. |
Страница: << 21 22 23 24 25 26 27 >> [Всего задач: 201]
Дан вписанный четырёхугольник ABCD. Точки P и Q
симметричны точке C относительно прямых AB и AD
соответственно.
На сторонах AB , BC и AC треугольника ABC взяты
точки C' , A' и B' соответственно. Докажите, что
площадь треугольника A'B'C' равна
где R – радиус описанной окружности треугольника ABC .
Четырёхугольник ABCD с попарно непараллельными сторонами описан около окружности с центром O. Докажите, что точка O совпадает с точкой пересечения средних линий четырёхугольника ABCD тогда и только тогда, когда OA·OC = OB·OD.
Дан тетраэдр ABCD. Вписанная в него сфера σ касается грани ABC в точке T. Сфера σ' касается грани ABC в точке T' и продолжений граней ABD, BCD, CAD. Докажите, что прямые AT и AT' симметричны относительно биссектрисы угла BAC.
Найдите геометрическое место точек пересечения высот треугольников, у которых даны середина одной стороны и основания высот, опущенных на две другие.
Страница: << 21 22 23 24 25 26 27 >> [Всего задач: 201]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке