Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Заславский А.А.

Алексей Александрович Заславский (род.1960 г.) - к.т.н. (1990), старший научный сотрудник ЦЭМИ РАН, председатель жюри олимпиады им. Шарыгина, редактор Journal of Classical Geometry, член редколлегии "Кванта".

Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Высоты AA' и CC' остроугольного треугольника ABC пересекаются в точке H. Точка B0 – середина стороны AC.
Докажите, что точка пересечения прямых, симметричных BB0 и HB0 относительно биссектрис углов B и AHC соответственно, лежит на прямой A'C'.

   Решение

Все задачи автора

Страница: << 22 23 24 25 26 27 28 >> [Всего задач: 204]      



Задача 108227

Темы:   [ Вспомогательные подобные треугольники ]
[ Описанные четырехугольники ]
[ Подобные фигуры ]
[ Удвоение медианы ]
[ Углы между биссектрисами ]
[ Признаки и свойства параллелограмма ]
[ Параллелограмм Вариньона ]
[ Три точки, лежащие на одной прямой ]
Сложность: 4
Классы: 9,10,11

Четырёхугольник ABCD с попарно непараллельными сторонами описан около окружности с центром O. Докажите, что точка O совпадает с точкой пересечения средних линий четырёхугольника ABCD тогда и только тогда, когда  OA·OC = OB·OD.

Прислать комментарий     Решение

Задача 110124

Темы:   [ Сфера, вписанная в тетраэдр ]
[ Касательные к сферам ]
[ Вспомогательные равные треугольники ]
Сложность: 4
Классы: 10,11

Дан тетраэдр ABCD. Вписанная в него сфера σ касается грани ABC в точке T. Сфера σ' касается грани ABC в точке T' и продолжений граней ABD, BCD, CAD. Докажите, что прямые AT и AT' симметричны относительно биссектрисы угла BAC.

Прислать комментарий     Решение

Задача 110761

Темы:   [ Конкуррентность высот. Углы между высотами. ]
[ ГМТ - окружность или дуга окружности ]
[ Отрезок, видимый из двух точек под одним углом ]
[ Ортоцентр и ортотреугольник ]
[ ГМТ и вписанный угол ]
Сложность: 4
Классы: 8,9

Найдите геометрическое место точек пересечения высот треугольников, у которых даны середина одной стороны и основания высот, опущенных на две другие.
Прислать комментарий     Решение


Задача 110766

Темы:   [ Шестиугольники ]
[ Три прямые, пересекающиеся в одной точке ]
[ Вписанные и описанные окружности ]
[ Свойства серединных перпендикуляров к сторонам треугольника. ]
[ Вписанные и описанные многоугольники ]
[ Симметрия помогает решить задачу ]
Сложность: 4
Классы: 9,10,11

В шестиугольнике ABCDEF  AB = BC,  CD = DE,  EF = FA  и  ∠A = ∠C = ∠E.
Докажите, что главные диагонали шестиугольника пересекаются в одной точке.

Прислать комментарий     Решение

Задача 110794

Темы:   [ Прямые и кривые, делящие фигуры на равновеликие части ]
[ Отношение, в котором биссектриса делит сторону ]
[ Периметр треугольника ]
[ Свойства биссектрис, конкуррентность ]
[ Площадь фигуры равна сумме площадей фигур, на которые она разбита ]
[ Отношения площадей (прочее) ]
[ Вписанные и описанные окружности ]
[ Ортоцентр и ортотреугольник ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 4
Классы: 8,9,10

Прямая, проходящая через центр описанной окружности и точку пересечения высот неравностороннего треугольника ABC, делит его периметр и площадь в одном и том же отношении. Найдите это отношение.

Прислать комментарий     Решение

Страница: << 22 23 24 25 26 27 28 >> [Всего задач: 204]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .