ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Заславский А.А.

Алексей Александрович Заславский (род.1960 г.) - к.т.н. (1990), старший научный сотрудник ЦЭМИ РАН, председатель жюри олимпиады им. Шарыгина, редактор Journal of Classical Geometry, член редколлегии "Кванта".

Фильтр
Сложность с по   Класс с по  
Все задачи автора

Страница: << 24 25 26 27 28 29 30 >> [Всего задач: 196]      



Задача 116188

Темы:   [ ГМТ - окружность или дуга окружности ]
[ Окружность Аполлония ]
[ Подобные треугольники (прочее) ]
[ Замечательные точки и линии в треугольнике (прочее) ]
[ Изогональное сопряжение ]
Сложность: 4
Классы: 8,9

В окружность вписан треугольник ABC. Постройте такую точку P, что точки пересечения прямых AP, BP и CP с данной окружностью являются вершинами равностороннего треугольника.

Прислать комментарий     Решение

Задача 116189

Темы:   [ Вписанные и описанные окружности ]
[ Подобные треугольники (прочее) ]
[ Вневписанные окружности ]
[ Точка Нагеля. Прямая Нагеля ]
[ Гомотетия помогает решить задачу ]
Сложность: 4
Классы: 8,9

Пусть A1, B1, C1 – середины сторон треугольника ABC, I – центр вписанной в него окружности, C2 – точка пересечения прямых C1I и A1B1, C3 – точка пересечения прямых CC2 и AB. Докажите, что прямая IC3 перпендикулярна прямой AB.

Прислать комментарий     Решение

Задача 116200

Темы:   [ Равные треугольники. Признаки равенства (прочее) ]
[ Три точки, лежащие на одной прямой ]
[ Композиции поворотов ]
[ Параллельный перенос (прочее) ]
Сложность: 4
Классы: 8,9

Hа сторонах треугольника ABC во внешнюю сторону построены правильные треугольники ABC1, BCA1, CAB1. Hа отрезке A1B1 во внешнюю сторону треугольника A1B1C1 построен правильный треугольник A1B1C2. Докажите, что C – середина отрезка C1C2.

Прислать комментарий     Решение

Задача 116207

Темы:   [ Признаки подобия ]
[ Вписанные и описанные окружности ]
[ Теорема синусов ]
Сложность: 4
Классы: 10,11

Даны треугольник ABC и произвольная точка P, A1, B1 и C1  – вторые точки пересечения прямых AP, BP и CP с описанной окружностью треугольника ABC, A2, B2 и C2 – точки, симметричные A1, B1 и C1 относительно прямых BC, CA и AB соответственно. Докажите, что треугольники A1B1C1 и A2B2C2 подобны.

Прислать комментарий     Решение

Задача 116753

Темы:   [ Наибольшая или наименьшая длина ]
[ Кривые второго порядка ]
[ Метод ГМТ ]
Сложность: 4
Классы: 10,11

Внутри окружности с центром O отмечены точки A и B так, что  OA = OB.
Постройте на окружности точку M, для которой сумма расстояний до точек A и B наименьшая среди всех возможных.

Прислать комментарий     Решение

Страница: << 24 25 26 27 28 29 30 >> [Всего задач: 196]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .