ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]() |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Петя и Вася играют в следующую игру. Петя загадывает натуральное число x с суммой цифр 2012. За один ход Вася выбирает любое натуральное число a и узнаёт у Пети сумму цифр числа |x – a|. Какое минимальное число ходов необходимо сделать Васе, чтобы гарантированно определить x? Фокусник с помощником собираются показать такой фокус. Зритель пишет на доске последовательность из N цифр. Помощник фокусника закрывает две соседних цифры чёрным кружком. Затем входит фокусник. Его задача – отгадать обе закрытые цифры (и порядок, в котором они расположены). При каком наименьшем N фокусник может договориться с помощником так, чтобы фокус гарантированно удался? В треугольнике ABC провели биссектрису CL. В треугольники CAL и CBL вписали окружности, которые касаются прямой AB в точках M и N соответственно. Затем все, кроме точек A, L, M и N, стерли. С помощью циркуля и линейки восстановите треугольник. В угол A, равный α, вписана окружность, касающаяся его сторон в точках B и C. Прямая, касающаяся окружности в некоторой точке M, пересекает отрезки AB и AC в точках Р и Q соответственно. При каких α может быть выполнено неравенство SPAQ < SBMC? Пусть C(n) – количество различных простых делителей числа n. В остроугольном треугольнике проведены высоты AA1 и BB1. Докажите, что перпендикуляр, опущенный из точки касания вписанной окружности со стороной BC на прямую AC, проходит через центр вписанной окружности треугольника A1CB1. |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 36]
В остроугольном треугольнике проведены высоты AA1 и BB1. Докажите, что перпендикуляр, опущенный из точки касания вписанной окружности со стороной BC на прямую AC, проходит через центр вписанной окружности треугольника A1CB1.
B треугольнике ABC угол A равен 120°. Докажите, что расстояние от центра описанной окружности до ортоцентра равно AB + AC.
Дан выпуклый многогранник и точка $K$, не принадлежащая ему. Для каждой точки $M$ многогранника строится шар с диаметром $MK$. Докажите, что в многограннике существует единственная точка, принадлежащая всем таким шарам.
Дан треугольник ABC. Две прямые, симметричные прямой AC относительно прямых AB и BC соответственно, пересекаются в точке K.
Окружности Ω1 и Ω2 пересекаются в точках A и B. Через точку B проведена прямая, вторично пересекающая Ω1 и Ω2 в точках K и M соответственно. Прямая l1 касается Ω1 в точке Q и параллельна прямой AM. R – вторая точка пересечения прямой QA с Ω2. Докажите, что
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 36]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке